1
|
Martes L, Pfleiderer P, Köhl M, Sillmann J. Using climate envelopes and earth system model simulations for assessing climate change induced forest vulnerability. Sci Rep 2024; 14:17076. [PMID: 39048656 PMCID: PMC11269643 DOI: 10.1038/s41598-024-68181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Changing climatic conditions threaten forest ecosystems. Drought, disease and infestation, are leading to forest die-offs which cause substantial economic and ecological losses. In central Europe, this is especially relevant for commercially important coniferous tree species. This study uses climate envelope exceedance (CEE) to approximate species risk under different future climate scenarios. To achieve this, we used current species presence-absence and historical climate data, coupled with future climate scenarios from various Earth System Models. Climate scenarios tended towards drier and warmer conditions, causing strong CEEs especially for spruce. However, we show that annual averages of temperature and precipitation obscure climate extremes. Including climate extremes reveals a broader increase in CEEs across all tree species. Our study shows that the consideration of climate extremes, which cannot be adequately reflected in annual averages, leads to a different assessment of the risk of forests and thus the options for adapting to climate change.
Collapse
Affiliation(s)
- Leam Martes
- Institute for Wood Science - World Forestry, Universität Hamburg, Leuschnerstraße 91, 21029, Hamburg, Germany.
| | - Peter Pfleiderer
- Research Unit for Sustainability and Climate Risks, Universität Hamburg, Grindelberg 5, 20144, Hamburg, Germany
- Climate Analytics, Berlin, Germany
| | - Michael Köhl
- Institute for Wood Science - World Forestry, Universität Hamburg, Leuschnerstraße 91, 21029, Hamburg, Germany
| | - Jana Sillmann
- Research Unit for Sustainability and Climate Risks, Universität Hamburg, Grindelberg 5, 20144, Hamburg, Germany
| |
Collapse
|
2
|
Long-Term Carbon Sequestration in Pine Forests under Different Silvicultural and Climatic Regimes in Spain. FORESTS 2022. [DOI: 10.3390/f13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proactive silviculture treatments (e.g., thinning) may increase C sequestration contributing to climate change mitigation, although, there are still questions about this effect in Mediterranean pine forests. The aim of this research was to quantify the storage of biomass and soil organic carbon in Pinus forests along a climatic gradient from North to South of the Iberian Peninsula. Nine experimental Pinus spp trials were selected along a latitudinal gradient from the pre-Pyrenees to southern Spain. At each location, a homogeneous area was used as the operational scale, and three thinning intensity treatments: unthinned or control (C), intermediate thinning (LT, removal of 30–40% of the initial basal area) and heavy thinning (HT, removal of 50–60%) were conducted. Growth per unit area (e.g., expressed as basal area increment-BAI), biomass, and Soil Organic Carbon (SOC) were measured as well as three sets of environmental variables (climate, soil water availability and soil chemical and physical characteristics). One-way ANOVA and Structural Equation Modelling (SEM) were used to study the effect of thinning and environmental variables on C sequestration. Biomass and growth per unit area were higher in the control than in the thinning treatments, although differences were only significant for P. halepensis. Radial growth recovered after thinning in all species, but it was faster in the HT treatments. Soil organic carbon (SOC10, 0–10 cm depth) was higher in the HT treatments for P. halepensis and P. sylvestris, but not for P. nigra. SEM showed that Pinus stands of the studied species were beneficed by HT thinning, recovering their growth quickly. The resulting model explained 72% of the variation in SOC10 content, and 89% of the variation in silvicultural condition (basal area and density) after thinning. SOC10 was better related to climate than to silvicultural treatments. On the other hand, soil chemical and physical characteristics did not show significant influence over SOC10- Soil water availability was the latent variable with the highest influence over SOC10. This work is a new contribution that shows the need for forest managers to integrate silviculture and C sequestration in Mediterranean pine plantations.
Collapse
|
3
|
Increased water use efficiency leads to decreased precipitation sensitivity of tree growth, but is offset by high temperatures. Oecologia 2021; 197:1095-1110. [PMID: 33743068 PMCID: PMC8591026 DOI: 10.1007/s00442-021-04892-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Both increases in temperature and changes in precipitation may limit future tree growth, but rising atmospheric CO2 could offset some of these stressors through increased plant Water Use Efficiency (WUE). The net balance between the negative impacts of climate change and positive effects of CO2 on tree growth is crucial for ecotones, where increased climate stress could drive mortality and shifts in range. Here, we quantify the effects of climate, stand structure, and rising CO2 on both annual tree-ring growth increment and intrinsic WUE (iWUE) at a savanna-forest boundary in the Upper Midwest United States. Taking a Bayesian hierarchical modelling approach, we find that plant iWUE increased by ~ 16–23% over the course of the twentieth century, but on average, tree-ring growth increments do not significantly increase. Consistent with higher iWUE under increased CO2 and recent wetting, we observe a decrease in sensitivity of tree growth to annual precipitation, leading to ~ 35–41% higher growth under dry conditions compared to trees of similar size in the past. However, an emerging interaction between summer maximum temperatures and annual precipitation diminishes the water-savings benefit under hot and dry conditions. This decrease in precipitation sensitivity, and the interaction between temperature and precipitation are strongest in open canopy microclimates, suggesting that stand structure may modulate response to future changes. Overall, while higher iWUE may provide some water savings benefits to growth under normal drought conditions, near-term future temperature increases combined with drought events could drive growth declines of about 50%.
Collapse
|
4
|
Implications of Reduced Stand Density on Tree Growth and Drought Susceptibility: A Study of Three Species under Varying Climate. FORESTS 2020. [DOI: 10.3390/f11060627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A higher frequency of increasingly severe droughts highlights the need for short-term measures to adapt existing forests to climate change. The maintenance of reduced stand densities has been proposed as a promising silvicultural tool for mitigating drought stress. However, the relationship between stand density and tree drought susceptibility remains poorly understood, especially across ecological gradients. Here, we analysed the effect of reduced stand density on tree growth and growth sensitivity, as well as on short-term drought responses (resistance, recovery, and resilience) of Scots pine (Pinus sylvestris L.), sessile oak (Quercus petraea (Matt.) Liebl.), and ponderosa pine (Pinus ponderosa Douglas ex C. Lawson). Tree ring series from 409 trees, growing in stands of varying stand density, were analysed at sites with different water availability. For all species, mean tree growth was significantly higher under low compared with maximum stand density. Mean tree growth sensitivity of Scots pine was significantly higher under low compared with moderate and maximum stand density, while growth sensitivity of ponderosa pine peaked under maximum stand density. Recovery and resilience of Scots pine, as well as recovery of sessile oak and ponderosa pine, decreased with increasing stand density. In contrast, resistance and resilience of ponderosa pine significantly increased with increasing stand density. Higher site water availability was associated with significantly reduced drought response indices of Scots pine and sessile oak in general, except for resistance of oak. In ponderosa pine, higher site water availability significantly lessened recovery. Higher site water availability significantly moderated the positive effect of reduced stand density on drought responses. Stand age had a significantly positive effect on the resistance of Scots pine and a negative effect on recovery of sessile oak. We discuss potential causes for the observed response patterns, derive implications for adaptive forest management, and make recommendations for further research in this field.
Collapse
|
5
|
Carbon Limitation and Drought Sensitivity at Contrasting Elevation and Competition of Abies pinsapo Forests. Does Experimental Thinning Enhance Water Supply and Carbohydrates? FORESTS 2019. [DOI: 10.3390/f10121132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stand-level competition and local climate influence tree responses to increased drought at the regional scale. To evaluate stand density and elevation effects on tree carbon and water balances, we monitored seasonal changes in sap-flow density (SFD), gas exchange, xylem water potential, secondary growth, and non-structural carbohydrates (NSCs) in Abies pinsapo. Trees were subjected to experimental thinning within a low-elevation stand (1200 m), and carbon and water balances were compared to control plots at low and high elevation (1700 m). The hydraulic conductivity and the resistance to cavitation were also characterized, showing relatively high values and no significant differences among treatments. Trees growing at higher elevations presented the highest SFD, photosynthetic rates, and secondary growth, mainly because their growing season was extended until summer. Trees growing at low elevation reduced SFD during late spring and summer while SFD and secondary growth were significantly higher in the thinned stands. Declining NSC concentrations in needles, branches, and sapwood suggest drought-induced control of the carbon supply status. Our results might indicate potential altitudinal shifts, as better performance occurs at higher elevations, while thinning may be suitable as adaptive management to mitigate drought effects in endangered Mediterranean trees.
Collapse
|
6
|
Steel EJ, Fontaine JB, Ruthrof KX, Burgess TI, Hardy GESJ. Changes in structure of over- and midstory tree species in a Mediterranean-type forest after an extreme drought-associated heatwave. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emma J. Steel
- Environment and Conservation Science; College of Science, Health, Engineering and Education; Murdoch University; Murdoch Western Australia 6150 Australia
| | - Joseph B. Fontaine
- Environment and Conservation Science; College of Science, Health, Engineering and Education; Murdoch University; Murdoch Western Australia 6150 Australia
| | - Katinka X. Ruthrof
- Environment and Conservation Science; College of Science, Health, Engineering and Education; Murdoch University; Murdoch Western Australia 6150 Australia
- Department of Biodiversity; Conservation and Attractions; Kensington Western Australia Australia
| | - Treena I. Burgess
- Environment and Conservation Science; College of Science, Health, Engineering and Education; Murdoch University; Murdoch Western Australia 6150 Australia
| | - Giles E. St. J. Hardy
- Environment and Conservation Science; College of Science, Health, Engineering and Education; Murdoch University; Murdoch Western Australia 6150 Australia
| |
Collapse
|
7
|
Lo YH, Blanco JA, González de Andrés E, Imbert JB, Castillo FJ. CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Nicklen EF, Roland CA, Csank AZ, Wilmking M, Ruess RW, Muldoon LA. Stand basal area and solar radiation amplify white spruce climate sensitivity in interior Alaska: Evidence from carbon isotopes and tree rings. GLOBAL CHANGE BIOLOGY 2019; 25:911-926. [PMID: 30408264 DOI: 10.1111/gcb.14511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate-growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long-term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate-growth response. The negative radial growth response to warm and dry early- to mid-summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13 C was reduced in warm, dry summers and further diminished on south-facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13 C discrimination, and increased intrinsic water-use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate-growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure.
Collapse
Affiliation(s)
- Elizabeth Fleur Nicklen
- Central Alaska Network, National Park Service, Fairbanks, Alaska
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Carl A Roland
- Central Alaska Network, National Park Service, Fairbanks, Alaska
- Denali National Park and Preserve, Fairbanks, Alaska
| | - Adam Z Csank
- Department of Geography, University of Nevada Reno, Reno, Nevada
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Roger W Ruess
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Laurel Ann Muldoon
- Department of Environmental Geography, Nipissing University, North Bay, Ontario, Canada
| |
Collapse
|
9
|
Low Tree-Growth Elasticity of Forest Biomass Indicated by an Individual-Based Model. FORESTS 2018. [DOI: 10.3390/f9010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Warming Effects on Pinus sylvestris in the Cold–Dry Siberian Forest–Steppe: Positive or Negative Balance of Trade? FORESTS 2017. [DOI: 10.3390/f8120490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Responses of Contrasting Tree Functional Types to Air Warming and Drought. FORESTS 2017. [DOI: 10.3390/f8110450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Tullus A, Kupper P, Kaasik A, Tullus H, Lõhmus K, Sõber A, Sellin A. The competitive status of trees determines their responsiveness to increasing atmospheric humidity - a climate trend predicted for northern latitudes. GLOBAL CHANGE BIOLOGY 2017; 23:1961-1974. [PMID: 27779805 DOI: 10.1111/gcb.13540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The interactive effects of climate variables and tree-tree competition are still insufficiently understood drivers of forest response to global climate change. Precipitation and air humidity are predicted to rise concurrently at high latitudes of the Northern Hemisphere. We investigated whether the growth response of deciduous trees to elevated air humidity varies with their competitive status. The study was conducted in seed-originated silver birch and monoclonal hybrid aspen stands grown at the free air humidity manipulation (FAHM) experimental site in Estonia, in which manipulated stands (n = 3 for both species) are exposed to artificially elevated relative air humidity (6-7% over the ambient level). The study period included three growing seasons during which the stands had reached the competitive stage (trees were 7 years old in the final year). A significant 'treatment×competitive status' interactive effect on growth was detected in all years in birch (P < 0.01) and in one year in aspen stands (P = 0.015). Competitively advantaged trees were always more strongly affected by elevated humidity. Initially the growth of advantaged and neutral trees of both species remained significantly suppressed in humidified stands. In the following years, dominance and elevated humidity had a synergistic positive effect on the growth of birches. Aspens with different competitive status recovered more uniformly, attaining similar relative growth rates in manipulated and control stands, but preserved a significantly lower total growth yield due to severe initial growth stress. Disadvantaged trees of both species were never significantly affected by elevated humidity. Our results suggest that air humidity affects trees indirectly depending on their social status. Therefore, the response of northern temperate and boreal forests to a more humid climate in future will likely be modified by competitive relationships among trees, which may potentially affect species composition and cause a need to change forestry practices.
Collapse
Affiliation(s)
- Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Ants Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Hardi Tullus
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia
| | - Krista Lõhmus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Anu Sõber
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
13
|
Seidl R, Vigl F, Rössler G, Neumann M, Rammer W. Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials. FOREST ECOLOGY AND MANAGEMENT 2017; 388:3-12. [PMID: 28860674 PMCID: PMC5572630 DOI: 10.1016/j.foreco.2016.11.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As a result of a rapidly changing climate the resilience of forests is an increasingly important property for ecosystem management. Recent efforts have improved the theoretical understanding of resilience, yet its operational quantification remains challenging. Furthermore, there is growing awareness that resilience is not only a means to addressing the consequences of climate change but is also affected by it, necessitating a better understanding of the climate sensitivity of resilience. Quantifying current and future resilience is thus an important step towards mainstreaming resilience thinking into ecosystem management. Here, we present a novel approach for quantifying forest resilience from thinning trials, and assess the climate sensitivity of resilience using process-based ecosystem modeling. We reinterpret the wide range of removal intensities and frequencies in thinning trials as an experimental gradient of perturbation, and estimate resilience as the recovery rate after perturbation. Our specific objectives were (i) to determine how resilience varies with stand and site conditions, (ii) to assess the climate sensitivity of resilience across a range of potential future climate scenarios, and (iii) to evaluate the robustness of resilience estimates to different focal indicators and assessment methodologies. We analyzed three long-term thinning trials in Norway spruce (Picea abies (L.) Karst.) forests across an elevation gradient in Austria, evaluating and applying the individual-based process model iLand. The resilience of Norway spruce was highest at the montane site, and decreased at lower elevations. Resilience also decreased with increasing stand age and basal area. The effects of climate change were strongly context-dependent: At the montane site, where precipitation levels were ample even under climate change, warming increased resilience in all scenarios. At lower elevations, however, rising temperatures decreased resilience, particularly at precipitation levels below 750-800 mm. Our results were largely robust to different focal variables and resilience definitions. Based on our findings management can improve the capacity to recover from partial disturbances by avoiding overmature and overstocked conditions. At increasingly water limited sites a strongly decreasing resilience of Norway spruce will require a shift towards tree species better adapted to the expected future conditions.
Collapse
Affiliation(s)
- Rupert Seidl
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Corresponding author. (R. Seidl)
| | - Friedrich Vigl
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Günter Rössler
- Department of Forest Growth and Silviculture, Austrian Research Center for Forests (BFW), Vienna, Austria
| | - Markus Neumann
- Department of Forest Growth and Silviculture, Austrian Research Center for Forests (BFW), Vienna, Austria
| | - Werner Rammer
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
14
|
Understanding tree growth responses after partial cuttings: A new approach. PLoS One 2017; 12:e0172653. [PMID: 28222200 PMCID: PMC5319695 DOI: 10.1371/journal.pone.0172653] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees.
Collapse
|
15
|
Bottero A, D'Amato AW, Palik BJ, Bradford JB, Fraver S, Battaglia MA, Asherin LA. Density-dependent vulnerability of forest ecosystems to drought. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.12847] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandra Bottero
- Department of Forest Resources; University of Minnesota; St. Paul MN 55108 USA
- USDA Forest Service; Northern Research Station; Grand Rapids MN 55744 USA
| | - Anthony W. D'Amato
- Department of Forest Resources; University of Minnesota; St. Paul MN 55108 USA
- The Rubenstein School of Environment and Natural Resources; University of Vermont; Burlington VT 05405 USA
| | - Brian J. Palik
- USDA Forest Service; Northern Research Station; Grand Rapids MN 55744 USA
| | - John B. Bradford
- U.S. Geological Survey; Southwest Biological Science Center; Flagstaff AZ 86001 USA
| | - Shawn Fraver
- School of Forest Resources; University of Maine; Orono ME 04469 USA
| | - Mike A. Battaglia
- USDA Forest Service; Rocky Mountain Research Station; Fort Collins CO 80526 USA
| | - Lance A. Asherin
- USDA Forest Service; Rocky Mountain Research Station; Fort Collins CO 80526 USA
| |
Collapse
|
16
|
Alam SA, Huang JG, Stadt KJ, Comeau PG, Dawson A, Gea-Izquierdo G, Aakala T, Hölttä T, Vesala T, Mäkelä A, Berninger F. Effects of Competition, Drought Stress and Photosynthetic Productivity on the Radial Growth of White Spruce in Western Canada. FRONTIERS IN PLANT SCIENCE 2017; 8:1915. [PMID: 29163627 PMCID: PMC5681961 DOI: 10.3389/fpls.2017.01915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/23/2017] [Indexed: 05/05/2023]
Abstract
Understanding the complex interactions of competition, climate warming-induced drought stress, and photosynthetic productivity on the radial growth of trees is central to linking climate change impacts on tree growth, stand structure and in general, forest productivity. Using a mixed modeling approach, a stand-level photosynthetic production model, climate, stand competition and tree-ring data from mixedwood stands in western Canada, we investigated the radial growth response of white spruce [Picea glauca (Moench.) Voss] to simulated annual photosynthetic production, simulated drought stress, and tree and stand level competition. The long-term (~80-year) radial growth of white spruce was constrained mostly by competition, as measured by total basal area, with minor effects from drought. There was no relation of competition and drought on tree growth but dominant trees increased their growth more strongly to increases in modeled photosynthetic productivity, indicating asymmetric competition. Our results indicate a co-limitation of drought and climatic factors inhibiting photosynthetic productivity for radial growth of white spruce in western Canada. These results illustrate how a modeling approach can separate the complex factors regulating both multi-decadal average radial growth and interannual radial growth variations of white spruce, and contribute to advance our understanding on sustainable management of mixedwood boreal forests in western Canada.
Collapse
Affiliation(s)
- Syed A. Alam
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Physics, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Jian-Guo Huang
| | - Kenneth J. Stadt
- Forest Management Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada
| | - Philip G. Comeau
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Andria Dawson
- Department of General Education, Mount Royal University, Calgary, AB, Canada
| | | | - Tuomas Aakala
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Timo Vesala
- Department of Physics, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Annikki Mäkelä
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Frank Berninger
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Mediterranean Pine Forests: Management Effects on Carbon Stocks. MANAGING FOREST ECOSYSTEMS: THE CHALLENGE OF CLIMATE CHANGE 2017. [DOI: 10.1007/978-3-319-28250-3_15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Correction: Stand Competition Determines How Different Tree Species Will Cope with a Warming Climate. PLoS One 2015; 10:e0137932. [PMID: 26335134 PMCID: PMC4559479 DOI: 10.1371/journal.pone.0137932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|