1
|
Muñoz-Torres P, Cárdenas-Ninasivincha S, Aguilar Y. Exploring the Agricultural Applications of Microbial Melanin. Microorganisms 2024; 12:1352. [PMID: 39065119 PMCID: PMC11278939 DOI: 10.3390/microorganisms12071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Microbial melanins are a group of pigments with protective effects against harsh conditions, showing fascinating photoprotective activities, mainly due to their capability to absorb UV radiation. In bacteria, they are produced by the oxidation of L-tyrosine, generating eumelanin and pheomelanin. Meanwhile, allomelanin is produced by fungi through the decarboxylative condensation of malonyl-CoA. Moreover, melanins possess antioxidant and antimicrobial activities, revealing significant properties that can be used in different industries, such as cosmetic, pharmaceutical, and agronomical. In agriculture, melanins have potential applications, including the development of new biological products based on this pigment for the biocontrol of phytopathogenic fungi and bacteria to reduce the excessive and toxic levels of agrochemicals used in fields. Furthermore, there are possibilities to develop and improve new bio-based pesticides that control pest insects through the use of melanin-producing and toxin-producing Bacillus thuringiensis or through the application of melanin to insecticidal proteins to generate a new product with improved resistance to UV radiation that can then be applied to the plants. Melanins and melanin-producing bacteria have potential applications in agriculture due to their ability to improve plant growth. Finally, the bioremediation of water and soils is possible through the application of melanins to polluted soils and water, removing synthetic dyes and toxic metals.
Collapse
Affiliation(s)
- Patricio Muñoz-Torres
- Laboratorio de Patología Vegetal y Bioproductos, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile; (S.C.-N.); (Y.A.)
| | | | | |
Collapse
|
2
|
Wang T, Liu Y, Zou K, Guan M, Wu Y, Hu Y, Yu H, Du J, Wu D. The Analysis, Description, and Examination of the Maize LAC Gene Family's Reaction to Abiotic and Biotic Stress. Genes (Basel) 2024; 15:749. [PMID: 38927685 PMCID: PMC11202975 DOI: 10.3390/genes15060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Laccase (LAC) is a diverse group of genes found throughout the plant genome essential for plant growth and the response to stress by converting monolignin into intricate lignin formations. However, a comprehensive investigation of maize laccase has not yet been documented. A bioinformatics approach was utilized in this research to conduct a thorough examination of maize (Zea mays L.), resulting in the identification and categorization of 22 laccase genes (ZmLAC) into six subfamilies. The gene structure and motifs of each subgroup were largely consistent. The distribution of the 22 LAC genes was uneven among the maize chromosomes, with the exception of chromosome 9. The differentiation of the genes was based on fragment replication, and the differentiation time was about 33.37 million years ago. ZmLAC proteins are primarily acidic proteins. There are 18 cis-acting elements in the promoter sequences of the maize LAC gene family associated with growth and development, stress, hormones, light response, and stress response. The analysis of tissue-specific expression revealed a high expression of the maize LAC gene family prior to the V9 stage, with minimal expression at post-V9. Upon reviewing the RNA-seq information from the publicly available transcriptome, it was discovered that ZmLAC5, ZmLAC10, and ZmLAC17 exhibited significant expression levels when exposed to various biotic and abiotic stress factors, suggesting their crucial involvement in stress responses and potential value for further research. This study offers an understanding of the functions of the LAC genes in maize's response to biotic and abiotic stress, along with a theoretical basis for comprehending the molecular processes at play.
Collapse
Affiliation(s)
- Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Yang Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Minhui Guan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Yutong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Ying Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| |
Collapse
|
3
|
Ayodeji FD, Shava B, Iqbal HMN, Ashraf SS, Cui J, Franco M, Bilal M. Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2023; 153:1932-1956. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
4
|
Beeson W, Gabriel K, Cornelison C. Fungi as a source of eumelanin: current understanding and prospects. J Ind Microbiol Biotechnol 2023; 50:kuad014. [PMID: 37336591 PMCID: PMC10569377 DOI: 10.1093/jimb/kuad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Melanins represent a diverse collection of pigments with a variety of structures and functions. One class of melanin, eumelanin, is recognizable to most as the source of the dark black color found in cephalopod ink. Sepia officinalis is the most well-known and sought-after source of non-synthetic eumelanin, but its harvest is limited by the availability of cuttlefish, and its extraction from an animal source brings rise to ethical concerns. In recent years, these limitations have become more pressing as more applications for eumelanin are developed-particularly in medicine and electronics. This surge in interest in the applications of eumelanin has also fueled a rise in the interest of alternative, bio-catalyzed production methods. Many culinarily-utilized fungi are ideal candidates in this production scheme, as examples exist which have been shown to produce eumelanin, their growth at large scales is well understood, and they can be cultivated on recaptured waste streams. However, much of the current research on the fungal production of eumelanin focuses on pathogenic fungi and eumelanin's role in virulence. In this paper, we will review the potential for culinary fungi to produce eumelanin and provide suggestions for new research areas that would be most impactful in the search for improved fungal eumelanin producers.
Collapse
Affiliation(s)
- William Beeson
- Department of Molecular and Cellular Biology, Kennesaw State
University, 1000 Chastain Road NW, Kennesaw, GA
30144, USA
| | - Kyle Gabriel
- Department of Molecular and Cellular Biology, Kennesaw State
University, 1000 Chastain Road NW, Kennesaw, GA
30144, USA
| | - Christopher Cornelison
- Department of Molecular and Cellular Biology, Kennesaw State
University, 1000 Chastain Road NW, Kennesaw, GA
30144, USA
| |
Collapse
|
5
|
Lorquin F, Piccerelle P, Orneto C, Robin M, Lorquin J. New insights and advances on pyomelanin production: from microbial synthesis to applications. J Ind Microbiol Biotechnol 2022; 49:6575554. [PMID: 35482661 PMCID: PMC9338888 DOI: 10.1093/jimb/kuac013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022]
Abstract
Pyomelanin is a brown-black phenolic polymer and results from the oxidation of homogentisic acid (HGA) in the L-tyrosine pathway. As part of the research for natural and active ingredients issued from realistic bioprocesses, this work re-evaluates the HGA pigment and makes an updated inventory of its syntheses, microbial pathways, and properties, with tracks and recent advances for its large-scale production. The mechanism of the HGA polymerization is also well documented. In alkaptonuria, pyomelanin formation leads to connective tissue damages and arthritis, most probably due to the ROS issued from HGA oxidation. While UV radiation on human melanin may generate degradation products, pyomelanin is not photodegradable, is hyperthermostable, and has other properties better than the L-Dopa melanin. This review aims to raise awareness about the potential of this pigment for various applications, not only for skin coloring and protection but also for other cells, materials, and as a promising (semi)conductor for bioelectronics and energy.
Collapse
Affiliation(s)
- Faustine Lorquin
- Aix-Marseille Université, Mediterranean Institute of Oceanology (MIO), 163 avenue de Luminy, 13288 Marseille Cedex 9, France.,Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Philippe Piccerelle
- Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Caroline Orneto
- Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Maxime Robin
- Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Jean Lorquin
- Aix-Marseille Université, Mediterranean Institute of Oceanology (MIO), 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
6
|
Song D, Cao Y, Xia Y. MaNsdD regulates conidiation negatively by inhibiting the AbaA expression required for normal conidiation in Metarhizium acridum. Environ Microbiol 2022; 24:2951-2961. [PMID: 35384250 DOI: 10.1111/1462-2920.16000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
Conidiation necessary for filamentous fungal survival and dispersal, proceeds in two fashions, namely normal conidiation through conidiophores differentiated from hyphae, and microcycle conidiation through conidial budding. Normal conidiation has been well studied whereas mechanisms underlying microcycle conidiation are still largely unknown. Here, we report that a gene (MaNsdD) homologous to NsdD in Aspergillus nidulans serves as a suppressor of normal conidiation but a positive regulator of hyphal development in Metarhizium acridum. Disruption of MaNsdD (ΔMaNsdD) resulted in microcycle conidiation and significantly descended in conidial resistance to heat while improved to UV irradiation. Transcriptomic analysis revealed that many genes involved in conidiation, cell division and cell wall formation were differentially expressed in ΔMaNsdD, and likely associated with the conidiation process. We found that a gene (MaAbaA) homologous to the core asexual development regulator AbaA in A. nidulans, was negatively controlled by MaNsdD. Disruption of MaAbaA led to the abolition of the conidiation process of M. acridum. These findings unravel a novel regulatory mechanism of microcycle conidiation, and add a knowledge to the asexual conidiation pathway of filamentous fungi.
Collapse
Affiliation(s)
- Dongxu Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
7
|
Höft MA, Duvenage L, Hoving JC. Key thermally dimorphic fungal pathogens: shaping host immunity. Open Biol 2022; 12:210219. [PMID: 35259948 PMCID: PMC8905152 DOI: 10.1098/rsob.210219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/09/2022] [Indexed: 01/09/2023] Open
Abstract
Exposure to fungal pathogens from the environment is inevitable and with the number of at-risk populations increasing, the prevalence of invasive fungal infection is on the rise. An interesting group of fungal organisms known as thermally dimorphic fungi predominantly infects immunocompromised individuals. These potential pathogens are intriguing in that they survive in the environment in one form, mycelial phase, but when entering the host, they are triggered by the change in temperature to switch to a new pathogenic form. Considering the growing prevalence of infection and the need for improved diagnostic and treatment approaches, studies identifying key components of fungal recognition and the innate immune response to these pathogens will significantly contribute to our understanding of disease progression. This review focuses on key endemic dimorphic fungal pathogens that significantly contribute to disease, including Histoplasma, Coccidioides and Talaromyces species. We briefly describe their prevalence, route of infection and clinical presentation. Importantly, we have reviewed the major fungal cell wall components of these dimorphic fungi, the host pattern recognition receptors responsible for recognition and important innate immune responses supporting adaptive immunity and fungal clearance or the failure thereof.
Collapse
Affiliation(s)
- Maxine A. Höft
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - J. Claire Hoving
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
8
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
9
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Choquer M, Rascle C, Gonçalves IR, de Vallée A, Ribot C, Loisel E, Smilevski P, Ferria J, Savadogo M, Souibgui E, Gagey MJ, Dupuy JW, Rollins JA, Marcato R, Noûs C, Bruel C, Poussereau N. The infection cushion of Botrytis cinerea: a fungal 'weapon' of plant-biomass destruction. Environ Microbiol 2021; 23:2293-2314. [PMID: 33538395 DOI: 10.1111/1462-2920.15416] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays. 1231 upregulated genes and 79 up-accumulated proteins were identified. The data support the secretion of effectors by IC: phytotoxins, ROS, proteases, cutinases, plant cell wall-degrading enzymes and plant cell death-inducing proteins. Parallel upregulation of sugar transport and sugar catabolism-encoding genes would indicate a role of IC in nutrition. The data also reveal a substantial remodelling of the IC cell wall and suggest a role for melanin and chitosan in IC function. Lastly, mutagenesis of two upregulated genes in IC identified secreted fasciclin-like proteins as actors in the pathogenesis of B. cinerea. These results support the role of IC in plant penetration and also introduce other unexpected functions for this fungal organ, in colonization, necrotrophy and nutrition of the pathogen.
Collapse
Affiliation(s)
- Mathias Choquer
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Christine Rascle
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Isabelle R Gonçalves
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Amélie de Vallée
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Cécile Ribot
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Elise Loisel
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Pavlé Smilevski
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Jordan Ferria
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Mahamadi Savadogo
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Eytham Souibgui
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Marie-Josèphe Gagey
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Jean-William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, Bordeaux, France
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Riccardo Marcato
- Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France.,Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Legnaro, Italy
| | - Camille Noûs
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Christophe Bruel
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Nathalie Poussereau
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| |
Collapse
|
11
|
Li J, Li Z, Zhao T, Yan X, Pang Q. Proteomic Analysis of Auricularia auricula-judae Under Freezing Treatment Revealed Proteins and Pathways Associated With Melanin Reduction. Front Microbiol 2021; 11:610173. [PMID: 33519763 PMCID: PMC7844145 DOI: 10.3389/fmicb.2020.610173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Auricularia auricula-judae is an edible nutrient-rich mushroom, which is a traditional medicinal resource in China. It is known that environment stimuli will affect the production of melanin by A. auricula-judae, but the mechanism of the effects of freezing treatment on melanin accumulation remains unknown. In the present study, the synthesis of melanin in A. auricula-judae was analyzed by physiological assays and a proteomics approach. Our findings showed that a longer freezing treatment causes a lighter color of A. auricula-judae fruiting bodies. The proteomic analysis showed that proteins involved in glycolysis/gluconeogenesis, tyrosine metabolism, ribosome, and arginine biosynthesis might contribute to the color differences in the A. auricula-judae after freezing treatment. This work will be expected to provide valuable information on the physiological and molecular mechanisms of freezing treatment on the color quality of A. auricula-judae.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Ziwei Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tong Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
The role of melanins in melanotic fungi for pathogenesis and environmental survival. Appl Microbiol Biotechnol 2020; 104:4247-4257. [PMID: 32206837 DOI: 10.1007/s00253-020-10532-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Melanins provide fungi protection from environmental stressors, support their ecological roles, and can confer virulence in pathogens. While the function, structure, and synthesis of melanins in fungi are not fully understood, they have been shown to have varied roles. Recent research has revealed a wide range of functions, from radiation resistance to increasing virulence, shedding light on fungal diversity. Understanding fungal melanins can provide useful information, from harnessing the properties of these various melanins to targeting fungal infections.Key Points• Melanotic fungi are widespread in nature. • Melanin functions to protect fungi in the environment from a range of stresses. • Melanin contributes to pathogenesis and drug resistance of pathogenic fungi.
Collapse
|
13
|
Contreras-Moreno FJ, Muñoz-Dorado J, García-Tomsig NI, Martínez-Navajas G, Pérez J, Moraleda-Muñoz A. Copper and Melanin Play a Role in Myxococcus xanthus Predation on Sinorhizobium meliloti. Front Microbiol 2020; 11:94. [PMID: 32117124 PMCID: PMC7010606 DOI: 10.3389/fmicb.2020.00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Myxococcus xanthus is a soil myxobacterium that exhibits a complex lifecycle with two multicellular stages: cooperative predation and development. During predation, myxobacterial cells produce a wide variety of secondary metabolites and hydrolytic enzymes to kill and consume the prey. It is known that eukaryotic predators, such as ameba and macrophages, introduce copper and other metals into the phagosomes to kill their prey by oxidative stress. However, the role of metals in bacterial predation has not yet been established. In this work, we have addressed the role of copper during predation of M. xanthus on Sinorhizobium meliloti. The use of biosensors, variable pressure scanning electron microscopy, high-resolution scanning transmission electron microscopy, and energy dispersive X ray analysis has revealed that copper accumulates in the region where predator and prey collide. This accumulation of metal up-regulates the expression of several mechanisms involved in copper detoxification in the predator (the P1B-ATPase CopA, the multicopper oxidase CuoA and the tripartite pump Cus2), and the production by the prey of copper-inducible melanin, which is a polymer with the ability to protect cells from oxidative stress. We have identified two genes in S. meliloti (encoding a tyrosinase and a multicopper oxidase) that participate in the biosynthesis of melanin. Analysis of prey survivability in the co-culture of M. xanthus and a mutant of S. meliloti in which the two genes involved in melanin biosynthesis have been deleted has revealed that this mutant is more sensitive to predation than the wild-type strain. These results indicate that copper plays a role in bacterial predation and that melanin is used by the prey to defend itself from the predator. Taking into consideration that S. meliloti is a nitrogen-fixing bacterium in symbiosis with legumes that coexists in soils with M. xanthus and that copper is a common metal found in this habitat as a consequence of several human activities, these results provide clear evidence that the accumulation of this metal in the soil may influence the microbial ecosystems by affecting bacterial predatory activities.
Collapse
Affiliation(s)
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Natalia Isabel García-Tomsig
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Estación Experimental del Zaidín, Granada, Spain
| | | | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
14
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
15
|
The Role of Melanin in Fungal Pathogenesis for Animal Hosts. Curr Top Microbiol Immunol 2019; 422:1-30. [PMID: 31278515 DOI: 10.1007/82_2019_173] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens-melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.
Collapse
|
16
|
Suwannarach N, Kumla J, Watanabe B, Matsui K, Lumyong S. Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS One 2019; 14:e0222187. [PMID: 31498821 PMCID: PMC6733467 DOI: 10.1371/journal.pone.0222187] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/25/2019] [Indexed: 11/19/2022] Open
Abstract
Melanin is a natural pigment that is produced by filamentous fungi. In this study, the endophytic species, Spissiomyces endophytica (strain SDBR-CMU319), produced a brown-black pigment in the mycelia. Consequently, the pigment was extracted from the dried fungal biomass. This was followed by pigment purification, characterization and identification. Physical and chemical characteristics of the pigment showed acid precipitation, alkali solubilization, decolorization with oxidizing agents, and insolubility in most organic solvents and water. The pigment was confirmed as melanin based on ultraviolet-visible spectroscopy, Fourier-transform infrared, and electron paramagnetic resonance spectra analyses. The analyses of the elemental composition indicated that the pigment possessed a low percentage of nitrogen, and therefore, was not 3,4-dihydroxyphenylalanine melanin. Inhibition studies involving specific inhibitors, both tricyclazole and phthalide, and suggest that fungal melanin could be synthesized through the 1,8-dihydroxynaphthalene pathway. The optimum conditions for fungal pigment production from this species were investigated. The highest fungal pigment yield was observed in glucose yeast extract peptone medium at an initial pH value of 6.0 and at 25°C over three weeks of cultivation. This is the first report on the production and characterization of melanin obtained from the genus Spissiomyces.
Collapse
Affiliation(s)
- Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation (Agriculture), Yamaguchi University, Yamaguchi, Japan
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
17
|
Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiol Res 2019; 222:1-13. [DOI: 10.1016/j.micres.2019.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
|
18
|
Characterization of the Neurospora crassa DHN melanin biosynthetic pathway in developing ascospores and peridium cells. Fungal Biol 2018; 123:1-9. [PMID: 30654952 DOI: 10.1016/j.funbio.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 08/07/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022]
Abstract
Neurospora crassa contains all four enzymes for the synthesis of DHN (dihydroxynaphthalene), the substrate for melanin formation. We show that the DHN melanin pathway functions during N. crassa female development to generate melanized peridium and ascospore cell walls. N. crassa contains one polyketide synthase (PER-1), two polyketide hydrolases (PKH-1 and PKH-2), two THN (tetrahydroxynaphthalene) reductases (PKR-1 and PKR-2), and one scytalone dehydratase (SCY-1). We show that the PER-1, PKH-1, PKR-1 and SCY-1 are required for ascospoer melanization. We also identified the laccase that functions in the conversion of DHN into melanin via a free radical oxidative polymerization reaction, and have named the gene lacm-1 (laccase for melanin formation-1). In maturing perithecia, we show that LACM-1 is localized to the peridium cell wall space while the DHN pathway enzymes are localized to intracellular vesicles. We present a model for melanin formation in which melanin is formed within the cell wall space and the cell wall structure is similar to "reinforced concrete" with the cell wall glucan, chitin, and glycoproteins encased within the melanin polymer. This arrangement provides for a very strong and resilient cell wall and protects the glucan/chitin/glycoprotein matrix from digestion from enzymes and damage from free radicals.
Collapse
|
19
|
Huang L, Liu M, Huang H, Wen Y, Zhang X, Wei Y. Recent Advances and Progress on Melanin-like Materials and Their Biomedical Applications. Biomacromolecules 2018; 19:1858-1868. [DOI: 10.1021/acs.biomac.8b00437] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Long Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, P.R. China
- Department of Chemistry and Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
20
|
Zhou Y, Yang L, Wu M, Chen W, Li G, Zhang J. A Single-Nucleotide Deletion in the Transcription Factor Gene bcsmr1 Causes Sclerotial-Melanogenesis Deficiency in Botrytis cinerea. Front Microbiol 2017; 8:2492. [PMID: 29312200 PMCID: PMC5733056 DOI: 10.3389/fmicb.2017.02492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
Botrytis cinerea is an important plant pathogenic fungus with a wide range of host. It usually produces black-colored sclerotia (BS) due to deposition of 1,8-dihydroxynaphthalene melanin in sclerotial melanogenesis. Our previous study (Zhou et al., 2018) reported six B. cinerea isolates producing orange-colored sclerotia (OS) with deficiency in sclerotial melanogenesis. Comparison of ecological fitness (conidia, mycelia, sclerotia), natural distribution, and melanogenesis of selected BS and OS isolates suggests that sclerotia play an important role in the disease cycle caused by B. cinerea. However, the molecular mechanism for formation of the OS B. cinerea remains unknown. This study was done to unravel the molecular mechanism for the sclerotial melanogenesis deficiency in the OS isolates. We found that all the five sclerotial melanogenesis genes (bcpks12, bcygh1, bcbrn1/2, bcscd1) were down-regulated in OS isolates, compared to the genes in the BS isolates. However, the sclerotial melanogenesis-regulatory gene bcsmr1 had similar expression in both types of sclerotia, suggesting the sclerotial melanogenesis deficiency is due to loss-of-function of bcsmr1, rather than lack of expression of bcsmr1. Therefore, we cloned bcsmr1 from OS (bcsmr1OS ) and BS (bcsmr1BS ) isolates, and found a single-nucleotide deletion in bcsmr1OS . The single-nucleotide deletion caused formation of a premature stop codon in the open reading frame of bcsmr1OS , resulting in production of a 465-aa truncated protein. The transcription activity of the truncated protein was greatly reduced, compared to that of the 935-aa full-length protein encoded by bcsmr1BS in the BS isolates. The function of bcsmr1OS was partially complemented by bcsmr1BS . This study not only elucidated the molecular mechanism for formation of orange-colored sclerotia by the spontaneous mutant XN-1 of B. cinerea, but also confirmed the regulatory function of bcsmr1 in sclerotial melanogenesis of B. cinerea.
Collapse
Affiliation(s)
- Yingjun Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Laboratory of Biological Processing, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, United States
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Boral H, Metin B, Döğen A, Seyedmousavi S, Ilkit M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 2017; 111:92-107. [PMID: 29102684 DOI: 10.1016/j.fgb.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
The incidence of fungal diseases has been increasing since 1980, and is associated with excessive morbidity and mortality, particularly among immunosuppressed patients. Of the known 625 pathogenic fungal species, infections caused by the genera Aspergillus, Candida, Cryptococcus, and Trichophyton are responsible for more than 300 million estimated episodes of acute or chronic infections worldwide. In addition, a rather neglected group of opportunistic fungi known as black yeasts and their filamentous relatives cause a wide variety of recalcitrant infections in both immunocompetent and immunosuppressed hosts. This article provides an overview of selected virulence factors that are known to suppress host immunity and enhance the infectivity of these fungi.
Collapse
Affiliation(s)
- Hazal Boral
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Center of Excellence for Infection Biology and Antimicrobial Pharmacology, Tehran, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey.
| |
Collapse
|
22
|
He Y, Li L, Hu F, Chen W, Lei H, Chen X, Cai W, Tang X. Expression and characterization of a Talaromyces marneffei active phospholipase B expressed in a Pichia pastoris expression system. Emerg Microbes Infect 2016; 5:e120. [PMID: 27876784 PMCID: PMC5148023 DOI: 10.1038/emi.2016.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 01/20/2023]
Abstract
Phospholipase B is a virulence factor for several clinically important pathogenic fungi, including Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, but its role in the thermally dimorphic fungus Talaromyces marneffei remains unclear. Here, we provide the first report of the expression of a novel phospholipase gene, designated TmPlb1, from T. marneffei in the eukaryotic expression system of Pichia pastoris GS115. Sensitive real-time quantitative reverse-transcription PCR (qRT-PCR) demonstrated that the expression of TmPlb1 increased 1.85-fold in the yeast phase compared with the mycelial phase. TmPlb1 contains an open reading frame (ORF) of 732 bp that encodes a protein of 243 amino acids. The conserved serine, aspartate and histidine catalytic triad and the G-X-S-X-G domain of TmPLB1 provide the structural basis for its molecular activity. The ORF of TmPlb1 was successfully cloned into a pPIC9K vector containing an α-mating factor secretion signal that allowed the secretory expression of TmPLB1 in P. pastoris. The heterologous protein expression began 12 h after methanol induction and peaked at 96 h. Through analysis with SDS-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting and mass spectrometry, we confirmed that TmPLB1 was successfully expressed. Through Ni-affinity chromatography, TmPLB1 was highly purified, and its concentration reached 240.4 mg/L of culture medium. With specific substrates, the phospholipase A1 and phospholipase A2 activities of TmPLB1 were calculated to be 5.96 and 1.59 U/mg, respectively. The high purity and activity of the TmPLB1 obtained here lay a solid foundation for further investigation.
Collapse
Affiliation(s)
- Yan He
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Fengyu Hu
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Wanshan Chen
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Huali Lei
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Xiejie Chen
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Xiaoping Tang
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
23
|
Williamson PR. Role of laccase in the virulence of Talaromyces marneffei: A common link between AIDS-related fungal pathogens? Virulence 2016; 7:627-9. [PMID: 27282335 DOI: 10.1080/21505594.2016.1198867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Peter R Williamson
- a Laboratory of Clinical Infectious Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
24
|
Sapmak A, Kaewmalakul J, Nosanchuk JD, Vanittanakom N, Andrianopoulos A, Pruksaphon K, Youngchim S. Talaromyces marneffei laccase modifies THP-1 macrophage responses. Virulence 2016; 7:702-17. [PMID: 27224737 DOI: 10.1080/21505594.2016.1193275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Talaromyces (Penicillium) marneffei is an emerging opportunistic pathogen associated with HIV infection, particularly in Southeast Asia and southern China. The rapid uptake and killing of T. marneffei conidia by phagocytic cells along with the effective induction of an inflammatory response by the host is essential for disease control. T. marneffei produces a number of different laccases linked to fungal virulence. To understand the role of the various laccases in T. marneffei, laccase-encoding genes were investigated. Targeted single, double and triple gene deletions of laccases encoding lacA, lacB, and lacC showed no significant phenotypic effects suggesting redundancy of function. When a fourth laccase-encoding gene, pbrB, was deleted in the ΔlacA ΔlacB ΔlacC background, the quadruple mutant displayed delayed conidiation and the conidia were more sensitive to H2O2, sodium dodecyl sulfate (SDS), and antifungal agents than wild-type and other transformants. Conidia of the quadruple mutant showed marked differences in their interaction with the human monocyte cell line, THP-1 such that phagocytosis was significantly higher when compared with the wild-type at one and 2 hours of incubation while the phagocytic index was significantly different from 15 to 120 minutes. In addition, killing of the quadruple mutant by THP-1 cells was more efficient at 2 and 4 hours of incubation. The levels of the proinflammatory cytokines TNF-α, IL-1β and IL-6 from THP-1 cells infected with the quadruple mutant were also significantly increased in comparison with wild-type. The results demonstrate that production of laccases by T. marneffei actually promotes the pathogen's resistance to innate host defenses.
Collapse
Affiliation(s)
- Ariya Sapmak
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand.,b Faculty of Medical Technology, Nakhon Ratchasima College , Nakhon Ratchasima , Thailand
| | - Jutikul Kaewmalakul
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Joshua D Nosanchuk
- c Department of Medicine, Division of Infectious Diseases, and Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Nongnuch Vanittanakom
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Alex Andrianopoulos
- d Genetics, Genomics and Development, School of BioSciences, The University of Melbourne , Victoria , Australia
| | - Kritsada Pruksaphon
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Sirida Youngchim
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
25
|
Li XQ, Guo BL, Cai WY, Zhang JM, Huang HQ, Zhan P, Xi LY, Vicente VA, Stielow B, Sun JF, de Hoog GS. The role of melanin pathways in extremotolerance and virulence of Fonsecaea revealed by de novo assembly transcriptomics using illumina paired-end sequencing. Stud Mycol 2016; 83:1-18. [PMID: 27504027 PMCID: PMC4969264 DOI: 10.1016/j.simyco.2016.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Melanisation has been considered to be an important virulence factor of Fonsecaea monophora. However, the biosynthetic mechanisms of melanisation remain unknown. We therefore used next generation sequencing technology to investigate the transcriptome and digital gene expression data, which are valuable resources to better understand the molecular and biological mechanisms regulating melanisation in F. monophora. We performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of parent (CBS 122845) and albino (CBS 125194) strains using the Illumina RNA-seq system. A total of 17 352 annotated unigenes were found by BLAST search of NR, Swiss-Prot, Gene Ontology, Clusters of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) (E-value <1e‒5). A total of 2 283 unigenes were judged to be the differentially expressed between the two genotypes. We identified most of the genes coding for key enzymes involved in melanin biosynthesis pathways, including polyketide synthase (pks), multicopper oxidase (mco), laccase, tyrosinase and homogentisate 1,2-dioxygenase (hmgA). DEG analysis showed extensive down-regulation of key genes in the DHN pathway, while up-regulation was noted in the DOPA pathway of the albino mutant. The transcript levels of partial genes were confirmed by real time RT-PCR, while the crucial role of key enzymes was confirmed by either inhibitor or substrate tests in vitro. Meanwhile, numbers of genes involved in light sensing, cell wall synthesis, morphology and environmental stress were identified in the transcriptome of F. monophora. In addition, 3 353 SSRs (Simple Sequence Repeats) markers were identified from 21 600 consensus sequences. Blocking of the DNH pathway is the most likely reason of melanin deficiency in the albino strain, while the production of pheomelanin and pyomelanin were probably regulated by unknown transcription factors on upstream of both pathways. Most of genes involved in environmental tolerance to oxidants, irradiation and extreme temperatures were also assembled and annotated in transcriptomes of F. monophora. In addition, thousands of identified cSSR (combined SSR) markers will favour further genetic linkage studies. In conclusion, these data will contribute to understanding the regulation of melanin biosynthesis and help to improve the studies of pathogenicity of F. monophora.
Collapse
Affiliation(s)
- X Q Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - B L Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - W Y Cai
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - J M Zhang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - H Q Huang
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - P Zhan
- Dermatology Hospital of Jiangxi Province, Nanchang, China; CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - L Y Xi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - V A Vicente
- Basic Pathology Department, Federal University of Paraná State, Curitiba, Paraná, Brazil
| | - B Stielow
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - J F Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - G S de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; Basic Pathology Department, Federal University of Paraná State, Curitiba, Paraná, Brazil; Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Dermatology, First Hospital of Peking University, Beijing, China
| |
Collapse
|