1
|
Mao S, Li J, Huang J, Lv L, Zhang Q, Cheng Q, Liu X, Bi Z, Yao J. Therapeutic potential of microRNA-506 in cancer treatment: mechanisms and therapeutic implications. Front Oncol 2025; 15:1524763. [PMID: 40248198 PMCID: PMC12003368 DOI: 10.3389/fonc.2025.1524763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Cancer is a complex and highly lethal disease marked by unchecked cell proliferation, aggressive behavior, and a strong tendency to metastasize. Despite significant advancements in cancer diagnosis and treatment, challenges such as early detection difficulties, drug resistance, and adverse effects of radiotherapy or chemotherapy continue to threaten patient survival. MicroRNAs (miRNAs) have emerged as critical regulators in cancer biology, with miR-506 being extensively studied and recognized for its tumor-suppressive effects across multiple cancer types. This review examines the regulatory mechanisms of miR-506 in common cancers, focusing on its role in the competing endogenous RNA (ceRNA) network and its effects on cancer cell proliferation, apoptosis, and migration. We also discuss the potential of miR-506 as a therapeutic target and its role in overcoming drug resistance in cancer treatment. Overall, these insights underscore the therapeutic potential of miR-506 and its promise in developing novel cancer therapies.
Collapse
Affiliation(s)
- Shuzhen Mao
- Department of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Junyan Li
- Department of Pathology, Second People’s Hospital of Ningyang, Taian, Shandong, China
| | - Jiahui Huang
- Jining Key Laboratory of Pharmacology, School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Lili Lv
- Department of Pathology, Second People’s Hospital of Ningyang, Taian, Shandong, China
| | - Qilian Zhang
- Department of Pathology, People’s Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qing Cheng
- Jining Key Laboratory of Pharmacology, School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Xiaojing Liu
- Jining Key Laboratory of Pharmacology, School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Zhiwei Bi
- Jining Key Laboratory of Pharmacology, School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Jing Yao
- Jining Key Laboratory of Pharmacology, School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Yang T, Han Y, Chen J, Liang X, Sun L. MiR-506 Promotes Antitumor Immune Response in Pancreatic Cancer by Reprogramming Tumor-Associated Macrophages toward an M1 Phenotype. Biomedicines 2023; 11:2874. [PMID: 38001876 PMCID: PMC10669181 DOI: 10.3390/biomedicines11112874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 11/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant cancer with a poor prognosis, and effective treatments for PDAC are lacking. In this study, we hypothesized that miR-506 promotes antitumor immune response in PDAC by reprogramming tumor-associated macrophages toward an M1 phenotype to reverse its immunosuppressive tumor microenvironment (TME). First, the relationship between TME and the expression of miR-506 was assessed using clinical samples. Our results provided evidence that lower expression of miR-506 was associated with poor prognosis and immunosuppressive TME in PDAC patients. In addition, miR-506 inhibit the PDAC progression and reversed its immunosuppressive microenvironment in a macrophage-dependent manner. Next, we established a PDAC mouse model by orthotopic injection to further explore the role of miR-506 in vivo. Mechanistic investigations demonstrated that miR-506 could reprogram the polarization of M2-like macrophages toward an M1-like phenotype through targeting STAT3. Meanwhile, miR-506 could also sensitize PDAC to anti-PD-1 immunotherapy, because the tumor microenvironment remodeling effects of miR-506 could reprogram macrophage polarization and subsequently promote cytotoxic T lymphocyte (CTL) infiltration. These findings suggest a relationship between miR-506 and TME, especially M2-like macrophages, thus providing novel insights into mechanisms of tumor progression and potential immunotherapeutic targets for further clinical treatment.
Collapse
Affiliation(s)
| | | | | | | | - Longhao Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China (X.L.)
| |
Collapse
|
3
|
Retraction: SRCIN1 Suppressed Osteosarcoma Cell Proliferation and Invasion. PLoS One 2023; 18:e0282984. [PMID: 36989268 DOI: 10.1371/journal.pone.0282984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
4
|
Mitchell AV, Wu L, James Block C, Zhang M, Hackett J, Craig DB, Chen W, Zhao Y, Zhang B, Dang Y, Zhang X, Zhang S, Wang C, Gibson H, Pile LA, Kidder B, Matherly L, Yang Z, Dou Y, Wu G. FOXQ1 recruits the MLL complex to activate transcription of EMT and promote breast cancer metastasis. Nat Commun 2022; 13:6548. [PMID: 36319643 PMCID: PMC9626503 DOI: 10.1038/s41467-022-34239-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of the Forkhead box transcription factor, FOXQ1, is a prevalent mechanism of epithelial-mesenchymal transition (EMT) and metastasis in multiple carcinoma types. However, it remains unknown how FOXQ1 regulates gene expression. Here, we report that FOXQ1 initiates EMT by recruiting the MLL/KMT2 histone methyltransferase complex as a transcriptional coactivator. We first establish that FOXQ1 promoter recognition precedes MLL complex assembly and histone-3 lysine-4 trimethylation within the promoter regions of critical genes in the EMT program. Mechanistically, we identify that the Forkhead box in FOXQ1 functions as a transactivation domain directly binding the MLL core complex subunit RbBP5 without interrupting FOXQ1 DNA binding activity. Moreover, genetic disruption of the FOXQ1-RbBP5 interaction or pharmacologic targeting of KMT2/MLL recruitment inhibits FOXQ1-dependent gene expression, EMT, and in vivo tumor progression. Our study suggests that targeting the FOXQ1-MLL epigenetic axis could be a promising strategy to combat triple-negative breast cancer metastatic progression.
Collapse
Affiliation(s)
- Allison V Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - C James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Mu Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Douglas B Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaohong Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Lori A Pile
- The Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Benjamin Kidder
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Larry Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Retraction: MicroRNA-377 Suppresses Cell Proliferation and Invasion by Inhibiting TIAM1 Expression in Hepatocellular Carcinoma. PLoS One 2022; 17:e0266302. [PMID: 35325011 PMCID: PMC8947015 DOI: 10.1371/journal.pone.0266302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Retraction: MiR-506 Suppresses Tumor Proliferation and Invasion by Targeting FOXQ1 in Nasopharyngeal Carcinoma. PLoS One 2022; 17:e0266301. [DOI: 10.1371/journal.pone.0266301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Yin M, Cheng M, Liu C, Wu K, Xiong W, Fang J, Li Y, Zhang B. HNRNPA2B1 as a trigger of RNA switch modulates the miRNA-mediated regulation of CDK6. iScience 2021; 24:103345. [PMID: 34805798 PMCID: PMC8590077 DOI: 10.1016/j.isci.2021.103345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/17/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
The functional inactivation of tumor suppressor microRNA (miRNA) is closely related to the tumorigenesis of cancer. There are instances where the miRNA and the corresponding target both exist in a cell, but the target gene silencing do not occur as expected. Herein, we found that both miR-506 and its target CDK6 are highly co-expressed in lung cancer cells. Sequence analyses suggested that a miR-506 binding site (1648–1654) and a cis-element (1785–1795) for binding by heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) are evolutionarily conserved and forms a stem structure in the 3′ untranslated region (3′UTR) of CDK6. Furthermore, HNRNPA2B1 can bind to the stem structure to denature it and recruit the RNA helicase DExH-box helicase 9 (DHX9) to the 3′UTR, which ultimately facilitates miRNAs-mediated CDK6 silencing. These results indicate that the cis-element of the 3′UTR of CDK6, where HNRNPA2B1 binds, serves as an RNA switch to regulate miRNAs’ function in cancer cells. Both miR-506 and its target CDK6 are highly co-expressed in lung cancer HNRNPA2B1 facilitates miR-506-mediated CDK6 silence by switching structure in 3′UTR HNRNPA2B1 also recruits the DHX9 to the 3′UTR of its targets HNRNPA2B1 extensively regulates miRNAs-mediated gene silencing through binding to 3′UTR
Collapse
Affiliation(s)
- Menghui Yin
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meidie Cheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengli Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Keli Wu
- School of Life Science, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Ji Fang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Yinxiong Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Public Health, Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Biliang Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| |
Collapse
|
8
|
Xu G, Yang Z, Sun Y, Dong H, Ma J. Interaction of microRNAs with sphingosine kinases, sphingosine-1 phosphate, and sphingosine-1 phosphate receptors in cancer. Discov Oncol 2021; 12:33. [PMID: 35201458 PMCID: PMC8777508 DOI: 10.1007/s12672-021-00430-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, participates in various cellular processes during tumorigenesis, including cell proliferation, survival, drug resistance, metastasis, and angiogenesis. S1P is formed by two sphingosine kinases (SphKs), SphK1 and SphK2. The intracellularly produced S1P is delivered to the extracellular space by ATP-binding cassette (ABC) transporters and spinster homolog 2 (SPNS2), where it binds to five transmembrane G protein-coupled receptors to mediate its oncogenic functions (S1PR1-S1PR5). MicroRNAs (miRNAs) are small non-coding RNAs, 21-25 nucleotides in length, that play numerous crucial roles in cancer, such as tumor initiation, progression, apoptosis, metastasis, and angiogenesis via binding to the 3'-untranslated region (3'-UTR) of the target mRNA. There is growing evidence that various miRNAs modulate tumorigenesis by regulating the expression of SphKs, and S1P receptors. We have reviewed various roles of miRNAs, SphKs, S1P, and S1P receptors (S1PRs) in malignancies and how notable miRNAs like miR-101, miR-125b, miR-128, and miR-506, miR-1246, miR-21, miR-126, miR499a, miR20a-5p, miR-140-5p, miR-224, miR-137, miR-183-5p, miR-194, miR181b, miR136, and miR-675-3p, modulate S1P signaling. These tumorigenesis modulating miRNAs are involved in different cancers including breast, gastric, hepatocellular carcinoma, prostate, colorectal, cervical, ovarian, and lung cancer via cell proliferation, invasion, angiogenesis, apoptosis, metastasis, immune evasion, chemoresistance, and chemosensitivity. Therefore, understanding the interaction of SphKs, S1P, and S1P receptors with miRNAs in human malignancies will lead to better insights for miRNA-based cancer therapy.
Collapse
Affiliation(s)
- Guangmeng Xu
- Department of Colorectal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Yamin Sun
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Hongmei Dong
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Jingru Ma
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000 China
| |
Collapse
|
9
|
Yoshida K, Yokoi A, Yamamoto Y, Kajiyama H. ChrXq27.3 miRNA cluster functions in cancer development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:112. [PMID: 33766100 PMCID: PMC7992321 DOI: 10.1186/s13046-021-01910-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) regulate the expression of their target genes post-transcriptionally; thus, they are deeply involved in fundamental biological processes. miRNA clusters contain two or more miRNA-encoding genes, and these miRNAs are usually coexpressed due to common expression mechanisms. Therefore, miRNA clusters are effective modulators of biological pathways by the members coordinately regulating their multiple target genes, and an miRNA cluster located on the X chromosome q27.3 region has received much attention in cancer research recently. In this review, we discuss the novel findings of the chrXq27.3 miRNA cluster in various types of cancer. The chrXq27.3 miRNA cluster contains 30 mature miRNAs synthesized from 22 miRNA-encoding genes in an ~ 1.3-Mb region. The expressions of these miRNAs are usually negligible in many normal tissues, with the male reproductive system being an exception. In cancer tissues, each miRNA is dysregulated, compared with in adjacent normal tissues. The miRNA-encoding genes are not uniformly distributed in the region, and they are further divided into two groups (the miR-506-514 and miR-888-892 groups) according to their location on the genome. Most of the miRNAs in the former group are tumor-suppressive miRNAs that are further downregulated in various cancers compared with normal tissues. miR-506-3p in particular is the most well-known miRNA in this cluster, and it has various tumor-suppressive functions associated with the epithelial–mesenchymal transition, proliferation, and drug resistance. Moreover, other miRNAs, such as miR-508-3p and miR-509-3p, have similar tumor-suppressive effects. Hence, the expression of these miRNAs is clinically favorable as prognostic factors in various cancers. However, the functions of the latter group are less understood. In the latter group, miR-888-5p displays oncogenic functions, whereas miR-892b is tumor suppressive. Therefore, the functions of the miR-888–892 group are considered to be cell type- or tissue-specific. In conclusion, the chrXq27.3 miRNA cluster is a critical regulator of cancer progression, and the miRNAs themselves, their regulatory mechanisms, and their target genes might be promising therapeutic targets.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan. .,Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
10
|
Liao B, Yi Y, Zeng L, Wang Z, Zhu X, Liu J, Xie B, Liu Y. LINC00667 Sponges miR-4319 to Promote the Development of Nasopharyngeal Carcinoma by Increasing FOXQ1 Expression. Front Oncol 2021; 10:632813. [PMID: 33569351 PMCID: PMC7868543 DOI: 10.3389/fonc.2020.632813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence has indicated that lncRNAs regulate various biological and pathological processes in diverse malignant tumors. The roles of LINC00667 in cancer development have been explored in glioma, hepatocellular carcinoma and non-small cell lung cancer, but not in nasopharyngeal carcinoma (NPC). In the present study, we characterize the role and molecular mechanism of LINC00667 in NPC progression. It was found that LINC00667 was overexpressed in NPC cells compared to normal cells. Silencing LINC00667 suppressed the proliferation, migration, invasion and epithelial mesenchymal transition (EMT) in NPC cells. In addition, bioinformatics analysis revealed that LINC00667 acted as a ceRNA to absorb miR-4319. Further investigations illustrated that miR-4319 had low expression in NPC cells and functioned as a tumor suppressor in the progression of NPC. Mechanistic study identified forkhead box Q1 (FOXQ1) as a functional target of miR-4319. The effect of LINC00667 in NPC development was mediated by the miR-4319/FOXQ1 axis. Analysis on tumorxenograft mouse model demonstrated that knockdown of LINC00667 repressed NPC tumor growth in vivo and confirmed the in vitro results. Our present study suggested that LINC00667 promoted the malignant phenotypes of NPC cells by competitively binding to miR-4319 to up-regulate FOXQ1 expression. Our results reveled that LINC00667 could be a diagnostic and therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Yi
- Department of Gynaecological Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinhua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianguo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bingbin Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Zhou M, Dong Z, Hu S, Xiao M. LINC01433 targets miR-506-3p to promote the biological progress of nasopharyngeal carcinoma cells. Eur Arch Otorhinolaryngol 2021; 278:3363-3374. [PMID: 33479848 DOI: 10.1007/s00405-021-06607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The current study aimed to investigate the role of long intergenic noncoding 01433 (LINC01433) in the proliferation, migration and invasion of nasopharyngeal carcinoma (NPC). METHODS Real-time quantitative PCR (RT-qPCR) was performed to determine the expressions of LINC01433 and miR-506-3p in NPC samples and cell lines. The effects of LINC01433 on cell proliferation, migration and invasion were measured by CCK-8, wound healing assay and Transwell, respectively. In addition, Pearson correlation analysis, starBase, RNA immunoprecipitation, luciferase assay, Western blot and functional experiments were conducted to detect and confirm the relationship between LINC01433 and miR-506-3p. RESULTS LINC01433 level was noticeably elevated in NPC tissues and cell lines. As the expression of LINC01433 in 5-8F cells was the highest in NPC cell lines and the expression of LINC01433 in SUNE1 cells was the lowest, 5-8F and SUNE1 cells were therefore selected as the target cells for following experiments. Furthermore, miR-506-3p was predicted as the target of LINC01433, and the two were negatively correlated with each other. Interestingly, overexpression of LINC01433 promoted proliferation, migration and invasion of NPC cells, while miR-506-3p reversed such effects of LINC01433. Moreover, LINC01433 silencing had the opposite effects to LINC01433 overexpression. Furthermore, miR-506-3p overexpression inhibited the expressions of MMP2, N-cadherin, p-PI3K and p-Akt, and promoted the expressions of E-cadherin and TIMP-2, and partially reversed the role of LINC01433 in promoting cancer development. CONCLUSION The current findings reveal that LINC01433 regulates NPC cell biological progress through miR-506-3p.
Collapse
Affiliation(s)
- Mingguang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3, East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Zhihuai Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3, East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Sunhong Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3, East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Mang Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3, East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| |
Collapse
|
12
|
Carron J, Torricelli C, Silva JK, Queiroz GSR, Ortega MM, Lima CSP, Lourenço GJ. microRNAs deregulation in head and neck squamous cell carcinoma. Head Neck 2020; 43:645-667. [PMID: 33159410 DOI: 10.1002/hed.26533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck (HN) squamous cell carcinoma (SCC) is the eighth most common human cancer worldwide. Besides tobacco and alcohol consumption, genetic and epigenetic alterations play an important role in HNSCC occurrence and progression. microRNAs (miRNAs) are small noncoding RNAs that regulate cell cycle, proliferation, development, differentiation, and apoptosis by interfering in gene expression. Expression profiling of miRNAs showed that some miRNAs are upregulated or downregulated in tumor cells when compared with the normal cells. The present review focuses on the role of miRNAs deregulations in HNSCC, enrolled in risk, development, outcome, and therapy sensitivity. Moreover, the influence of single nucleotide variants in miRNAs target sites, miRNAs seed sites, and miRNAs-processing genes in HNSCC was also revised. Due to its potential for cancer diagnosis, progression, and as a therapeutic target, miRNAs may bring new perspectives in HNSCC understanding and therapy, especially for those patients with no or insufficient treatment options.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Caroline Torricelli
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Janet K Silva
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gabriela S R Queiroz
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Manoela M Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, Brazil
| | - Carmen S P Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gustavo J Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
13
|
Wang Y, Chen J, Wang X, Wang K. miR-140-3p inhibits bladder cancer cell proliferation and invasion by targeting FOXQ1. Aging (Albany NY) 2020; 12:20366-20379. [PMID: 33098639 PMCID: PMC7655201 DOI: 10.18632/aging.103828] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Upregulation of the forkhead box protein Q1 (FOXQ1) promotes bladder cancer (BCa) cell growth and metastasis. Factors affecting FOXQ1 expression at the post-transcriptional level have not yet been identified. We performed cell proliferation, cell invasion, and tumorigenesis experiments to characterize the relationship between FOXQ1 and miR-140-3p. We found that FOXQ1 was significantly upregulated and miR-140-3p was significantly downregulated in BCa tissues. We also identified an inverse correlation between miR-140-3p and FOXQ1 expression in BCa tissues. Overexpression of miR-140-3p reduced FOXQ1 expression, suppressing BCa cell proliferation and invasion. A luciferase assay confirmed that miR-140-3p bound to the 3’-UTR of FOXQ1 mRNA and decreased its expression. In addition, we used a mouse xenograft model to demonstrate that miR-140-3p suppressed tumor cell growth in vivo. Our findings suggest that miR-140-3p suppresses BCa cell proliferation and invasion by directly decreasing FOXQ1 expression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Junwen Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
14
|
Abdi E, Latifi-Navid S, Zahri S, Kholghi-Oskooei V, Mostafaiy B, Yazdanbod A, Pourfarzi F. SNP-SNP interactions of oncogenic long non-coding RNAs HOTAIR and HOTTIP on gastric cancer susceptibility. Sci Rep 2020; 10:16763. [PMID: 33028884 PMCID: PMC7541458 DOI: 10.1038/s41598-020-73682-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic variants within oncogenic long non-coding RNAs HOTAIR and HOTTIP may affect their gene expression levels, thereby modifying genetic susceptibility to gastric cancer (GC). In a hospital-based study in Ardabil-a very high-risk area in North-West Iran, 600 blood samples from 300 GC patients and 300 healthy controls were recruited for genotyping. Seven HOTAIR (i.e., rs17720428, rs7958904, rs1899663, and rs4759314) and HOTTIP (i.e., rs3807598, rs17501292, and rs1859168) 'tag' single nucleotide polymorphisms (SNPs) were genotyped by the Infinium HTS platform. The rs17720428, rs7958904, and rs1899663 tagSNPs significantly increased GC risk under dominant models by 1.5-, 1.57-, and 1.5-fold, respectively. The G-C-T-A haplotype of HOTAIR tagSNPs increased the risk of GC by 1.31-fold. No significant association was found between HOTTIP SNPs and the risk of GC. HOTAIR and HOTTIP variants were also not associated with any clinicopathologic characteristics. The SNP-SNP interaction of HOTAIR rs17720428/rs7958904 with HOTTIP rs1859168 was associated with an increased risk of GC (rs17720428 TG-rs1859168 CC, OR = 1.76; rs7958904 GC-rs1859168 CC, OR = 1.85; rs7958904 CC-rs1859168 CC, OR = 1.86). Interestingly, the SNP-SNP interaction of HOTAIR rs1899663 with HOTTIP rs1859168 strongly increased the risk of GC (rs1899663 GT-rs1859168 CC, OR = 4.3; rs1899663 TT-rs1859168 CC, OR = 9.37; rs1899663 TT-rs1859168 CA, OR = 6.59). We showed that the HOTAIR rs17720428, rs7958904, and rs1899663 tagSNPs and their interactions with the HOTTIP rs1859168 polymorphism significantly increased the risk of GC. Specifically, novel SNP-SNP interactions between HOTAIR and HOTTIP tagSNPs have a larger impact than individual SNP effects on GC risk, thereby providing us with valuable information to reveal potential biological mechanisms for developing GC.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran.
| | - Saber Zahri
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran
| | - Vahid Kholghi-Oskooei
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, 9516915169, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, 9516915169, Torbat Heydariyeh, Iran
| | - Behdad Mostafaiy
- Department of Statistics, Faculty of Sciences, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran
| | - Abbas Yazdanbod
- Digestive Disease Research Center, Ardabil University of Medical Sciences, 5618953141, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, 5618953141, Ardabil, Iran
| |
Collapse
|
15
|
Xu J, You Q, Wei Z, Fu H, Zhang Y, Hu Z, Cai Q. miR-519 inhibits epithelial-mesenchymal transition and biologic behavior of gastric cancer cells by down-regulating FOXQ1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:425-436. [PMID: 32269679 PMCID: PMC7137009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
In recent years, a number of studies have shown that forkhead box Q1 (FOXQ1) plays an important role in the process of epithelial-mesenchymal transition (EMT) of tumors. The aim of this study is to investigate the biologic functions of FOXQ1 and miR-519 in gastric cancer. It was found that FOXQ1 was highly expressed in gastric cancer cells and tumor tissues, and promoted proliferation, migration, invasion, and EMT of gastric cancer cells. miR-519 was weakly expressed in both gastric cancer tissues and gastric cancer cells, up-regulation of miR-519 inhibited the biologic behavior of gastric cancer cells, while down-regulation of miR-519 showed the opposite results. Additionally, miR-519 directly targeted FOXQ1 and inhibited FOXQ1 mRNA and protein expression. Overexpression of FOXQ1 in gastric cancer cells reversed the inhibitory effect of miR-519 on cellular biologic behavior. The results of the present study suggest that the abnormal expression of miR-519 and FOXQ1 may be closely related to gastric cancer development, and miR-519 may play an important role in suppressing tumor related genes in gastric cancer by targeting and regulating FOXQ1.
Collapse
Affiliation(s)
- Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University Shanghai, China
| | - Qing You
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University Shanghai, China
| | - Ziran Wei
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University Shanghai, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University Shanghai, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University Shanghai, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University Shanghai, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University Shanghai, China
| |
Collapse
|
16
|
Sun P, Fan X, Hu X, Fu X, Wei Q, Zang Y. circPCNX and Pecanex Promote Hepatocellular Carcinoma Cell Viability by Inhibiting miR-506. Cancer Manag Res 2019; 11:10957-10967. [PMID: 32099459 PMCID: PMC6997225 DOI: 10.2147/cmar.s232940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most common malignant cancers, while the molecular mechanism is not clear. Circular RNAs (circRNAs) are a class of naturally occurring endogenous noncoding RNAs that prove to play important roles in the occurrence, development and prognosis of HCC. In this study, we focused on an abnormally expressed circular RNA-circPCNX in HCC and study the function of circPCNX and Pecanex (PCNX) in HCC. Methods Circular RNA sequencing was used to find the abnormally expressed circRNAs and qRT-PCR was used to verify it. CCK8 assay, colony formation assay and cell apoptosis assay were used to study biological functions, and Luciferase reporter assay and Western blot analysis were used to study the mechanism. Results We observed that circPCNX and Pecanex were significantly upregulated in tumor tissues of patients with HCC and correlated with clinicopathological variables or prognosis of HCC patients. Functional investigations showed circPCNX and Pecanex could promote the viability of HCC cells. Mechanistic investigations suggested that both circPCNX and Pecanex 3'UTR could bind to miR-506 and subsequently inhibited the miR-506-induced anticarcinogenic effect in HCC. Conclusion Our study revealed the function of circPCNX and Pecanex in promoting HCC progression and acting as biomarkers in the clinical estimate and treatment of HCC.
Collapse
Affiliation(s)
- Peng Sun
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Xinyi Fan
- Intensive Care Unit, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Xiaoyue Fu
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Qian Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Yunjin Zang
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| |
Collapse
|
17
|
miR-543 promoted the cell proliferation and invasion of nasopharyngeal carcinoma by targeting the JAM-A. Hum Cell 2019; 32:477-486. [DOI: 10.1007/s13577-019-00274-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
|
18
|
Wang W, Wu LR, Li C, Zhou X, Liu P, Jia X, Chen Y, Zhu W. Five serum microRNAs for detection and predicting of ovarian cancer. Eur J Obstet Gynecol Reprod Biol X 2019; 3:100017. [PMID: 31404211 PMCID: PMC6687444 DOI: 10.1016/j.eurox.2019.100017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Ovarian cancer (OC) was one of the deadliest gynecological malignancy among women in global. Serum microRNAs (miRNAs) could serve as promising diagnostic biomarkers for patients with OC. STUDY DESIGN Using quantitative reverse transcription polymerase chain reaction (qRT-PCR) based Exiqon panel, we identified 27 differentially expressed miRNAs from one normal control (NC) pool and two OC pool samples in the initial screening stage. We further verified the miRNAs in the training (30 OC VS. 36 NCs) and validation stages (80 OC VS. 80 NCs) based on qRT-PCR. Later, the expression levels of the identified miRNAs were also evaluated in exosomes and tissues. RESULTS We found a serum microRNA signature including five overexpressed miRNAs (miR-200c-3p, miR-346, miR-127-3p, miR-143-3p and miR-205-5p) in OC in comparison with NCs. The areas under the receiver operating characteristic (ROC) curve (AUC) of the five-miRNA panel were 0.783 for the training stage and 0.745 for the validation stage. The diagnostic sensitivity and specificity of the combined five-miRNA panel was 0.818 and 0.609 when the cut-off value was 0.636. The levels of miR-200c-3p, miR-346 and miR-127-3p in serum were related to tumor grade and distant metastasis of OC. The expression levels of the five miRNAs were also significantly up-regulated in serum exosomes (32 OC VS. 32 NCs). Furthermore, miR-200c-3p was significantly elevated in OC tissues (22 OC VS. 22 NCs). But the levels of the miR-346 and miR-143-3p were significantly lower in OC tissues. CONCLUSION Our findings showed a five-miRNA panel in serum for the detection of OC. Moreover, serum expression levels of miR-200c-3p, miR-346 and miR-127-3p were concerned with tumor grade and distant metastasis of OC.
Collapse
Affiliation(s)
- Weiwei Wang
- Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Li-rong Wu
- Department of Radiation Oncology, The Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Road, Nanjing 210009, China
| | - Chunyu Li
- Emergency Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xin Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Ping Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xuemei Jia
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care hospital, 123 Mochou Road, Nanjing 210004, China
| | - Yan Chen
- Emergency Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- Medical Department, Kizilsu Kirghiz Autonomous Prefecture People’s Hospital, Artux 845350, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, No.1399 West Road, Shengze Town, Wujiang District, Suzhou 215000, China
| |
Collapse
|
19
|
Liang TS, Zheng YJ, Wang J, Zhao JY, Yang DK, Liu ZS. MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:97. [PMID: 30791932 PMCID: PMC6385449 DOI: 10.1186/s13046-019-1023-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/06/2019] [Indexed: 12/22/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT)-associated proteins play key roles in cancer progression and metastasis with the involvement of microRNAs (miRNAs). This study aims to assess the role of miR-506 working in tandem with LIM Homeobox 2 (LHX2) in EMT and metastasis through the Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma (NPC). Methods Differentially expressed genes associated with NPC were screened using microarray analyses, from which LHX2 was identified. Next, the potential relationship between miR-506 and LHX2 was analyzed. In order to explore the effect of miR-506 or LHX2 on NPC cell proliferation, migration, invasion and apoptosis, serials of mimics, inhibitors or siRNA against LHX2 were transfected into NPC cells. Then, the expression patterns of LHX2, Wnt1, β-catenin, E-cadherin, Vimentin, TCF4 and Twist were determined to assess the influence of miR-506 or LHX2 on EMT as well as the relationship between the Wnt/β-catenin signaling pathway and TCF4. The tumorigenicity and lymph node metastasis (LNM) in xenograft tumors of nude mice were observed. Results The has-miR-506-3p was identified as the down-regulated gene in NPC based on the microarray data while LHX2 was negatively regulated by miR-506. Over-expression of miR-506 or silencing of LHK2 inhibited NPC cell proliferation, migration, invasion, tumorigenicity and LNM but promoted apoptosis indicated by decreased Wnt1, β-catenin, Vimentin, TCF4 and Twist expressions along with increased E-cadherin expressions. Conclusions miR-506 inhibits tumor growth and metastasis in NPC via inhibition of Wnt/β-catenin signaling by down-regulating LHX2, accompanied by decreased TCF4. Taken together, miR-506 targeted-inhibition LHX2 presents a promising therapeutic strategy for the treatment of NPC. Trial registration ChiCTR1800018889. Registered 15 October 2018. Electronic supplementary material The online version of this article (10.1186/s13046-019-1023-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tian-Song Liang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Ying-Juan Zheng
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Juan Wang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Jing-Yi Zhao
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Dao-Ke Yang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China.
| | - Zhang-Suo Liu
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China.
| |
Collapse
|
20
|
Cui Z, Zhao Y. microRNA-342-3p targets FOXQ1 to suppress the aggressive phenotype of nasopharyngeal carcinoma cells. BMC Cancer 2019; 19:104. [PMID: 30678643 PMCID: PMC6346514 DOI: 10.1186/s12885-018-5225-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023] Open
Abstract
Background microRNA (miR)-342–3p is frequently dysregulated in human cancers. In the present study, we aimed to explore the expression, prognostic significance, and biological relevance of miR-342-3p in nasopharyngeal carcinoma (NPC). Methods We examined miR-342-3p expression in 79 paired NPC specimens and corresponding normal tissues and analyzed its prognostic impact on overall survival of NPC patients. Gain- and loss-of-function experiments were conducted to determine the biological roles of miR-342-3p. Results Compared with matched normal nasopharyngeal tissues, miR-342-3p was significantly downregulated in NPC (P = 0.0038). Low miR-342-3p expression was significantly correlated with reduced overall survival (P = 0.0084). Ectopic expression of miR-342-3p significantly suppressed proliferation, colony formation, and invasion of NPC cells. In contrast, depletion of miR-342-3p facilitated NPC cell proliferation and invasion. In vivo xenograft studies confirmed that overexpression of miR-342-3p restrained the growth of NPC xenograft tumors. Mechanistically, FOXQ1 served as a functional target of miR-342-3p. There was a significantly negative correlation between miR-342-3p and FOXQ1 expression (r = − 0.487, P = 0.004) in NPC specimens. Overexpression of FOXQ1 rescued the inhibitory effects of miR-342-3p on NPC cell growth and invasion. Conclusions miR-342-3p downregulation predicts poor prognosis in NPC patients and shows suppressive activity against NPC growth and invasion through repression of FOXQ1. Restoration of miR-342-3p may represent a potential therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Zheqing Cui
- Department of Rhinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yulin Zhao
- Department of Rhinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Gao L, Xiong X. MiR-223 inhibits the proliferation, invasion and EMT of nasopharyngeal carcinoma cells by targeting SSRP1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4374-4384. [PMID: 31949834 PMCID: PMC6962943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 06/10/2023]
Abstract
The aberrant expression of microRNAs (miRNAs) has been found in various types of cancer and is associated with tumorigenesis and metastasis. However, the expression and function of miR-223 in nasopharyngeal carcinoma (NPC) remain unclear. The present study demonstrated that miR-223 was downregulated in NPC cell lines. The ectopic expression of miR-223 dramatically suppressed cell proliferation, invasion and epithelial-mesenchymal transition (EMT). Moreover, a luciferase reporter assay identified the structure-specific recognition protein (SSRP1) as a novel direct target of miR-223. SSRP1 expression was upregulated in NPC cell lines and the overexpression of miR-233 markedly reduced the expression of SSRP1. Furthermore, SSRP1 was involved in miR-223-regulated NPC cell proliferation, invasion, and EMT. Taken together, these results indicate that miR-223 functions as a tumor suppressor miRNA in NPC and that its suppressive effects are primarily mediated by repressing SSRP1 expression and inhibiting EMT.
Collapse
Affiliation(s)
- Lei Gao
- Department of Otolaryngology, Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei, P. R. China
| | - Xingao Xiong
- Department of Otolaryngology, Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei, P. R. China
| |
Collapse
|
22
|
Li J, Ju J, Ni B, Wang H. The emerging role of miR-506 in cancer. Oncotarget 2018; 7:62778-62788. [PMID: 27542202 PMCID: PMC5308765 DOI: 10.18632/oncotarget.11294] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. They are involved in almost all biological processes, and many have been identified as potential oncogenes or tumor suppressor genes. miR-506 was recently discovered to play pivotal roles in regulating cell proliferation, differentiation, migration and invasion. Dysregulation of miR-506 has been demonstrated in multiple types of cancers; however, whether it functions as an oncogene or a tumor suppressor seems to be context-dependent. Altered miR-506 expression in cancer is caused by promoter methylation and changes in upstream transcription factors. In this review, we summarize the current understanding of the diverse roles and underlying mechanisms of miR-506 and its involvement in cancer, and suggest the potential therapeutic strategy based on miR-506.
Collapse
Affiliation(s)
- Jian Li
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Jingfang Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, PR China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
23
|
Vishnubalaji R, Hamam R, Yue S, Al-Obeed O, Kassem M, Liu FF, Aldahmash A, Alajez NM. MicroRNA-320 suppresses colorectal cancer by targeting SOX4, FOXM1, and FOXQ1. Oncotarget 2017; 7:35789-35802. [PMID: 27119506 PMCID: PMC5094962 DOI: 10.18632/oncotarget.8937] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer causing high mortality rates world-wide. Delineating the molecular mechanisms leading to CRC development and progression, including the role of microRNAs (miRNAs), are currently being unravelled at a rapid rate. Here, we report frequent downregulation of the microRNA miR-320 family in primary CRC tissues and cell lines. Lentiviral-mediated re-expression of miR-320c (representative member of the miR-320 family) inhibited HCT116 CRC growth and migration in vitro, sensitized CRC cells to 5-Fluorouracil (5-FU), and inhibited tumor formation in SCID mice. Global gene expression analysis in CRC cells over-expressing miR-320c, combined with in silico prediction identified 84 clinically-relevant potential gene targets for miR-320 in CRC. Using a series of biochemical assays and functional validation, SOX4, FOXM1, and FOXQ1 were validated as novel gene targets for the miR-320 family. Inverse correlation between the expression of miR-320 members with SOX4, FOXM1, and FOXQ1 was observed in primary CRC patients' specimens, suggesting that these genes are likely bona fide targets for the miR-320 family. Interestingly, interrogation of the expression levels of this gene panel (SOX4, FOXM1, and FOXQ1) in The Cancer Genome Atlas (TCGA) colorectal cancer data set (319 patients) revealed significantly poor disease-free survival in patients with elevated expression of this gene panel (P-Value: 0.0058). Collectively, our data revealed a novel role for the miR-320/SOX4/FOXM1/FOXQ1 axes in promoting CRC development and progression and suggest targeting those networks as potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rimi Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Shijun Yue
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Omar Al-Obeed
- Colorectal Research Center, Department of Surgery, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,KMEB, Department of Endocrinology, University of Southern Denmark, Odense, Denmark.,Danish Stem Cell Center (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nehad M Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Inhibition of sonic hedgehog signaling blocks cell migration and growth but induces apoptosis via suppression of FOXQ1 in natural killer/T-cell lymphoma. Leuk Res 2017; 64:1-9. [PMID: 29132010 DOI: 10.1016/j.leukres.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
Abstract
The present study explored the effects of Forkhead box Q1 (FOXQ1) on cell proliferation, cell cycle and apoptosis via the Sonic hedgehog (Shh) pathway in Natural killer/T-cell lymphoma (NKTCL). Quantitative real time-polymerase chain reaction (qRT-PCR) was performed to detect FOXQ1 expression in 117 NKTCL patients and 120 healthy controls. Additionally, FOXQ1 expression in NKTCL cell lines (HANK-1, NK-92, SNK-6, SNT-8 and YT) was determined by western blotting and qRT-PCR. SNK-6 cells were transfected with FOXQ1-shRNA or Shh pathway inhibitor Cyclopamine/recombinant protein Shh. Cell counting kit-8 (CCK-8) and 5-bromo-2-deoxy-uridine (BrdU) incorporation assays were conducted to detect cell proliferation, flow cytometry was used to determine the cell cycle and cell apoptosis, and western blotting was used to detect protein expression. FOXQ1 expression was higher in NKTCL patients than in healthy controls, which was related to Ann Arbor stage, bone marrow involvement and the 5year survival rate in NKTCL patients. Moreover, FOXQ1 expression, pathological type, Ann Arbor stage, B symptom and bone marrow involvement were independent risk factors in NKTCL. Shh pathway-related proteins were down-regulated after transfection of SNK-6 cells with FOXQ1-shRNA. Additionally, SNK-6 cell proliferation was greatly reduced, the cell cycle was blocked at the G0/G1 phase, and the expression of CyclinD1 and CyclinE was markedly decreased, while an increase in cell apoptosis with elevated Bcl-2-associated X protein (Bax) and Caspase-3 and reduced B-cell lymphoma/leukemia-2 (Bcl-2) were also observed. However, no significant alterations were observed between the FOXQ1-shRNA+Shh and Blank groups. The inhibition of FOXQ1 restricted NKTCL cell proliferation and growth but induced apoptosis via blocking the Shh signaling pathway.
Collapse
|
25
|
Qu R, Sun Y, Li Y, Hu C, Shi G, Tang Y, Guo D. MicroRNA-130a-3p suppresses cell viability, proliferation and invasion in nasopharyngeal carcinoma by inhibiting CXCL12. Am J Transl Res 2017; 9:3586-3598. [PMID: 28861150 PMCID: PMC5575173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Incidence of nasopharyngeal carcinoma (NPC) has remained high worldwide, posing a serious health problem. MicroRNAs (miRNAs) are a family of about 20-23 nucleotides small non-coding molecules, which play a significant role in NPC. In this study, we explored the molecular mechanisms of miR-130a-3p in inhibiting viability, proliferation, migration and invasion of NPC cells by suppressing CXCL12. The relative expression of miR-130a-3p and CXCL12 mRNA expression in tissues and cells was measured by qRT-PCR. NPC cell line CNE-2Z was transfected with miR-130a-3p mimics, CXCL12 siRNA, cDNA-CXCL12 and negative control. Western Blot was performed to detect CXCL12 expression. The MTT assay was performed to study cell viability. The colony formation assay was done to test cell growth. Flow cytometry was conducted to analyze cell cycle and apoptosis. The Transwell assay was used to investigate cell migration and invasion. The results found that the up-regulation of miR-130a-3p or down-regulation of CXCL12 could inhibit viability, proliferation, migration and invasion of CNE-2Z cells. Luciferase-reporting system assay was performed to investigate miR-130a-3p could bind to the 3'UTR region of CXCL12 and the overexpression of miR-130a-3p could suppress CXCL12 expression. Collectively, our finding suggested demonstrated that miR-130a-3p could prohibit the progression of NPC by suppressing CXCL12, which might serve as potential therapeutic targets for NPC.
Collapse
Affiliation(s)
- Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Yan Sun
- Department of Hematology and Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Yarong Li
- Department of Hematology and Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Chunmei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Guang Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Dongrui Guo
- Department of Hematology and Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
26
|
MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers. Oncotarget 2017; 8:12433-12450. [PMID: 27999212 PMCID: PMC5355356 DOI: 10.18632/oncotarget.14015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence has shown that microRNAs are widely implicated as indispensable components of tumor suppressive and oncogenic pathways in human cancers. Thus, identification of microRNA targets and their relevant pathways will contribute to the development of microRNA-based therapeutics. The forkhead box transcription factors regulate numerous processes including cell cycle progression, metabolism, metastasis and angiogenesis, thereby facilitating tumor initiation and progression. A complex network of protein and non-coding RNAs mediates the expression and activity of forkhead box transcription factors. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs and forkhead box transcription factors and describe the roles of microRNAs-forkhead box axis in various disease states including tumor initiation and progression. Additionally, we describe some of the technical challenges in the use of the microRNA-forkhead box signaling pathway in cancer treatment.
Collapse
|
27
|
Zhou H, Lin C, Zhang Y, Zhang X, Zhang C, Zhang P, Xie X, Ren Z. miR-506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell Prolif 2017; 50. [PMID: 28217977 DOI: 10.1111/cpr.12341] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Chemoresistance development represents a major obstacle to the successful treatment of colorectal cancer (CRC). The aim of this study was to elucidate the mechanism by which miR-506 reverses oxaliplatin chemoresistance in CRC. METHODS In this study, miR-506 levels were measured in 74 patients with colon cancer via quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH). We subsequently analysed the relationship between miR-506 expression and CRC patient survival via the Kaplan-Meier method. MTT assay demonstrated the fractional survival rates and cell viability of HCT116-OxR, HCT116-OxR-miR-Ctrl and HCT116-OxR-miR-506 cells treated with oxaliplatin at different concentrations. Cell proliferation and apoptosis were assessed via flow cytometry (FCM) analysis and apoptosis assay. MDR1 mRNA expression and P-gp protein expression were assessed via qRT-PCR and Western blotting (WB) respectively. Immunofluorescence (IF) staining demonstrated P-gp expression in HCT116-OxR and HCT116-OxR-miR-506 cells. qRT-PCR and WB were used to detect Wnt/β-catenin pathway activity after miR-506 overexpression. RESULTS In the present study, in ISH and qRT-PCR results demonstrated that miR-506 is weakly expressed in chemoresistant CRC tissues. The low miR-506 expression group exhibited lower 5-year OS and lower 5-year RFS than the high miR-506 expression group. miR-506 overexpression inhibited cell growth and increased oxaliplatin-induced cell apoptosis in HCT116-OxR cells, as shown via FCM and apoptosis assay. We subsequently noted low MDR1/P-gp expression in HCT116-OxR-miR-506 cells via qRT-PCR, WB and IF. Lastly, we demonstrated low MDR1/P-gp expression in HCT116-OxR-miR-506 cells via inhibition of the Wnt/β-catenin by WB, MTT and FCM analysis. CONCLUSION Taken together, the findings of our study demonstrate that miR-506 overexpression in HCT116-OxR cells enhances oxaliplatin sensitivity by inhibiting MDR1/P-gp expression via down-regulation of the Wnt/β-catenin pathway and thus provide a rationale for the development of miRNA-based strategies to reverse oxaliplatin resistance in CRC cells.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of General Surgery, Wuhan Third Hospital, Wuhan, China
| | - Changwei Lin
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuzhong Zhang
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Pengbo Zhang
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xingwang Xie
- Department of General Surgery, Wuhan Third Hospital, Wuhan, China
| | - Zeqiang Ren
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
28
|
Krawczyk P, Powrózek T, Olesiński T, Dmitruk A, Dziwota J, Kowalski D, Milanowski J. Evaluation of miR-506 and miR-4316 expression in early and non-invasive diagnosis of colorectal cancer. Int J Colorectal Dis 2017; 32:1057-1060. [PMID: 28405738 PMCID: PMC5486640 DOI: 10.1007/s00384-017-2814-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Examination of the entire colon by colonoscopy remains the golden standard for screening of colorectal cancer (CRC). However, patients are reluctant to perform invasive colonoscopies because of interference with their intimacy. Therefore, the potential use of non-invasive analysis of microRNAs expression in liquid biopsy as a novel biomarker for early CRC has investigated in several studies. In this study, we analyzed the expression of two novel microRNAs: miR-506 and miR-4316, which have never been examined in CRC. METHODS Plasma samples were collected from 56 patients (median age of 68 years) with operable colorectal cancer and from 70 healthy individuals (median age of 59 years). Expression of plasma microRNAs was evaluated by quantitative reverse transcription polymerase chain reaction using Eco real-time PCR device (Illumina, USA). RESULTS We found a significant elevated expression of both examined microRNAs in early CRC patients when compared to those in healthy individuals (p = 0.0054 for miR-506 and p = 0.0025 for miR-4316). The expression of miR-506 and miR-4316 did not depend on gender, age, disease stage, and tumor localization of CRC patients. ROC curve analysis showed that both examined microRNAs could differentiate early stage colorectal cancer from healthy individuals with 76.8% specificity and 60.7% sensitivity for miR-506 analysis and 76.8% specificity and 75% specificity for miR-4316 analysis. CONCLUSION Our study revealed that elevated expression of miR-506 and miR-4316 in peripheral blood were potential molecular markers for early colorectal cancer.
Collapse
Affiliation(s)
- Paweł Krawczyk
- 0000 0001 1033 7158grid.411484.cDepartment of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Tomasz Powrózek
- 0000 0001 1033 7158grid.411484.cDepartment of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Tomasz Olesiński
- Department of Oncological Gastroenterology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology in Warsaw, WK Roentgen 5, 02-781 Warsaw, Poland
| | - Adam Dmitruk
- Department of Oncological Gastroenterology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology in Warsaw, WK Roentgen 5, 02-781 Warsaw, Poland
| | - Joanna Dziwota
- 0000 0001 1033 7158grid.411484.cDepartment of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Dariusz Kowalski
- Department of Lung and Chest Tumor, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology in Warsaw, WK Roentgen 5, 02-781 Warsaw, Poland
| | - Janusz Milanowski
- 0000 0001 1033 7158grid.411484.cDepartment of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
29
|
LI YANG, ZHANG YEFEI, YAO ZHENDONG, LI SISI, YIN ZHENHUA, XU MIN. Forkhead box Q1: A key player in the pathogenesis of tumors (Review). Int J Oncol 2016; 49:51-8. [DOI: 10.3892/ijo.2016.3517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
|
30
|
MiR-125a regulates ovarian cancer proliferation and invasion by repressing GALNT14 expression. Biomed Pharmacother 2016; 80:381-387. [DOI: 10.1016/j.biopha.2015.12.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
|
31
|
Zhang Q, Li Q, Xu T, Jiang H, Xu LG. miR-491-5p suppresses cell growth and invasion by targeting Notch3 in nasopharyngeal carcinoma. Oncol Rep 2016; 35:3541-7. [PMID: 27035429 DOI: 10.3892/or.2016.4713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/12/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) have critical roles in the progression of nasopharyngeal carcinoma (NPC), a highly invasive and metastatic cancer that is widely prevalent in Southern China. miR-491-5p has been implicated in multiple types of cancer; however, its biological role and underlying mechanism in NPC have not been fully explored. In the present study, we found that miR-491-5p was downregulated in NPC tissues and cell lines compared with the corresponding normal counterparts. Overexpression of miR-491-5p significantly inhibited cell proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Using miRNA target prediction algorithms and reporter assays, we showed that miR-491-5p suppressed Notch3 expression both at the mRNA and protein level through directly targeting the 3' untranslated region (3'-UTR) of Notch3 mRNA. Overexpression of Notch3 significantly reversed the tumor-suppressive effects of miR‑491-5p. Taken together, the present study reveals a mechanistic link between miR-491-5p and Notch3 in the pathogenesis of NPC and that miR-491-5p has potential as a therapeutic target for NPC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of ENT, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Qiang Li
- Department of ENT, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Tao Xu
- Department of ENT, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Hui Jiang
- Department of ENT, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Lin-Gen Xu
- Department of ENT, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
32
|
ZHANG MINGTING, XU QINGLI, YAN SHUFEN, LI ZHIGANG, YAN WEI, JIA XIAOJING. Suppression of forkhead box Q1 by microRNA-506 represses the proliferation and epithelial-mesenchymal transition of cervical cancer cells. Oncol Rep 2016; 35:3106-14. [DOI: 10.3892/or.2016.4651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/17/2015] [Indexed: 11/05/2022] Open
|
33
|
Wu M, Zhang Y, Tang A, Tian L. miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:316-22. [PMID: 27114802 PMCID: PMC4834122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. MATERIALS AND METHODS We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the corresponding normal tissues and in cell lines using quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Both the protein function and the protein-independent role of TETs were investigated by cell viability assays and cell invasion assays using in vitro and in vivo models. RESULTS We found that all three TET genes were strongly up-regulated at the transcript level in CRC samples compared to matched normal tissues. The same results were observed in colorectal cancer cell lines. Knockdown of TETs by shTET1/2/3 showed that TET family members inhibited CRC growth and metastasis. We showed that TET family member degradation by miR-506 inhibits cell proliferation and invasion in colorectal cancer. CONCLUSION Through this study, we advance our understanding of the expression levels TETs and miR-506 in CRC and further clarify the internal regulatory mechanism of miR-506 by targeting TET during CRC processes. These findings may contribute to a novel avenue for researching and developing targeted therapies for CRC.
Collapse
Affiliation(s)
- Minghao Wu
- Department of Gastroenterology, The Hunan Provincial People's Hospital, Changsha, China
| | - Yu Zhang
- Department of Gastroenterology, The Hunan Provincial People's Hospital, Changsha, China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Corresponding author: Li Tian. Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China; Tel: 86-731-83928072; Fax: 86-731-82278012;
| |
Collapse
|
34
|
Yu Z, Zhang Y, Gao N, Wang X. Overexpression of miR-506 inhibits growth of osteosarcoma through Snail2. Am J Transl Res 2015; 7:2716-2723. [PMID: 26885269 PMCID: PMC4731669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis accounts for the majority of OS-related death. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Thus, elucidation of the involvement of specific miRNAs in the metastasis of OS may provide novel therapeutic targets for OS treatment. Here, we showed that in the OS specimens from patients, the levels of miR-506 were significantly decreased and the levels of Snail2 were significantly increased, compared to the paired normal bone tissue. MiR-506 and Snail2 inversely correlated in patients' specimen. Bioinformatics analyses predicted that miR-506 may target the 3'-UTR of Snail2 mRNA to inhibit its translation, which was confirmed by luciferase-reporter assay. Moreover, miR-506 overexpression inhibited Snail2-mediated cell invasiveness, while miR-506 depletion increased Snail2-mediated cell invasiveness in OS cells. Together, our data suggest that miR-506 suppression in OS cells may promote Snail2-mediated cancer metastasis.
Collapse
Affiliation(s)
- Zhongxiang Yu
- Department of Orthopaedics, Shu Guang Hospital Affiliated to Shanghai Traditional Chinese Medical UniversityShanghai 201203, China
| | - Yuting Zhang
- Department of Orthopaedics and Trauma, Shanghai Putuo District Central Hospital Affiliated to Shanghai Traditional Chinese Medical UniversityShanghai 200062, China
| | - Ningyang Gao
- Department of Orthopaedics, Shu Guang Hospital Affiliated to Shanghai Traditional Chinese Medical UniversityShanghai 201203, China
| | - Xiang Wang
- Department of Orthopaedics, Shu Guang Hospital Affiliated to Shanghai Traditional Chinese Medical UniversityShanghai 201203, China
| |
Collapse
|
35
|
Chen Z, Liu S, Tian L, Wu M, Ai F, Tang W, Zhao L, Ding J, Zhang L, Tang A. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget 2015; 6:38139-50. [PMID: 26497367 PMCID: PMC4741989 DOI: 10.18632/oncotarget.5709] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
miR-124 and miR-506 are reportedly down-regulated and associated with tumor progression in many cancers, but little is known about their intrinsic regulatory mechanisms in colorectal cancer (CRC). In this study, we found that the miR-124 and miR-506 levels were significantly lower in human CRC tissues than in controls, as indicated by qRT-PCR and in situ hybridization histochemistry. We also found that the overexpression of miR-124 or miR-506 inhibited tumor cell progression and increased sensitivity to chemotherapy in vitro. Increased miR-124 or miR-506 expression also inhibited tumor cell proliferation and invasion in vivo. Luciferase reporter assays and western blotting were used to determine the association between miR-124, miR-506 and their target genes, DNMTs. We further identified that miR-124 and miR-506 directly targeted DNMT3B and indirectly targeted DNMT1. The overexpression of miR-124 and miR-506 reduced global DNA methylation and restored the expression of E-cadherin, MGMT and P16. In conclusion, our data showed that miR-124 and miR-506 inhibit progression and increase sensitivity to chemotherapy by targeting DNMT3B and DNMT1 in CRC. These findings may provide novel avenues for the development of targeted therapies.
Collapse
Affiliation(s)
- Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaojun Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minghao Wu
- Department of Gastroenterology, The Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Wuliang Tang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lian Zhao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Juan Ding
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
36
|
Deng Q, Xie L, Li H. MiR-506 suppresses cell proliferation and tumor growth by targeting Rho-associated protein kinase 1 in hepatocellular carcinoma. Biochem Biophys Res Commun 2015; 467:921-7. [PMID: 26474697 DOI: 10.1016/j.bbrc.2015.10.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Recent studies have shown that miR-506 plays important roles in human cancer progression. However, little is known about the function of miR-506 in hepatocellular carcinoma (HCC). In this study, we found that miR-506 significantly inhibits HCC cell proliferation in vitro and tumorigenicity in vivo. Moreover, miR-506 induced G1/S cell cycle arrest and apoptosis in HCC cells. Rho-associated protein kinase 1(ROCK1) was identified as a novel target of miR-506; overexpression of ROCK1 reversed the suppressive effects of miR-506 in HCC cells. Additionally, ROCK1 was found up-regulated and inversely correlated with miR-506 in HCC tissues. Therefore, our findings collectively suggest that miR-506 acts as a tumor suppressor via regulation of ROCK1 expression and may thus be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Quanjun Deng
- Departments of Gastroenterology, Affiliated Hospital of Logistics University of the Chinese People's Armed Police Forces, Tianjin 300162, China.
| | - Liqun Xie
- Departments of Gastroenterology, Affiliated Hospital of Logistics University of the Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Hua Li
- Departments of Gastroenterology, Affiliated Hospital of Logistics University of the Chinese People's Armed Police Forces, Tianjin 300162, China
| |
Collapse
|
37
|
Dai W, Huang HL, Hu M, Wang SJ, He HJ, Chen NP, Li MY. microRNA-506 regulates proliferation, migration and invasion in hepatocellular carcinoma by targeting F-spondin 1 (SPON1). Am J Cancer Res 2015; 5:2697-2707. [PMID: 26609477 PMCID: PMC4633899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/27/2015] [Indexed: 06/05/2023] Open
Abstract
Our previous study indicates microRNA-506 (miR-506) is downregulated in hepatocellular carcinoma (HCC). In the current study, we investigate the effects of miR-506 on proliferation, migration and invasion in HCC. We report that enforced expression of miR-506 inhibits proliferation, migration and invasion in vitro, and suppresses tumor growth in vivo. Conversely, suppression of miR-506 exhibits promoting effects on proliferation, migration and invasion in vitro, and on tumor growth in vivo. In addition, miR-506 binds to the 3'UTR of F-spondin 1(SPON1), and enforced expression of miR-506 decreases accumulation of SPON1. Moreover, enforced expression of SPON1 and suppression of SPON1 alleviates effects of miR-506 mimics and inhibitors on proliferation, migration and invasion in vitro, respectively. In conclusion, microRNA-506 regulates proliferation, migration and invasion in HCC by targeting SPON1.
Collapse
Affiliation(s)
- Wei Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical College524001 Zhanjiang, China
| | - Hai-Li Huang
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical College524001 Zhanjiang, China
| | - Min Hu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical College524001 Zhanjiang, China
| | - Si-Jie Wang
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical College524001 Zhanjiang, China
| | - Hui-Juan He
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical College524001 Zhanjiang, China
| | - Nian-Pin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical College524001 Zhanjiang, China
| | - Ming-Yi Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical College524001 Zhanjiang, China
| |
Collapse
|