1
|
Silva DRS, Carreira ACO, Ferreira AO, da Silva MD, Sogayar MC, Miglino MA. Characterization of rat liver bud-derived cells. Tissue Cell 2021; 71:101510. [PMID: 33721789 DOI: 10.1016/j.tice.2021.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Cells derived from the fetal liver have been shown to be a rich source of progenitor stem cells, constituting a promising source for Tissue Engineering and Regenerative Medicine. In this study, embryo and fetal liver-bud derived cells from Fischer 344 rats were obtained at E12.5, E14.5 and E16.5 gestational days and evaluated for cell phenotype, survival and proliferation. Liver transaminase (AST and ALT) and AFP levels were lower in embryo liver-bud-derived cells on day 12.5. Markers for stem cells, cell cycle progression and cell death were differentially expressed in E12.5 cell cultures. Analysis of mitochondrial electric potential on 14.5 and 16.5 days showed a tendency for cells with lower functional or metabolic ability, in comparison to cultures derived from day 12.5. The results demonstrated that the majority of the E16.5 cells were in the G0 / G1 phase. The capacity of synthesis (S) and cellular division (G2 / M) of embryo and fetal liver bud-derived cells was constant over all gestational periods. In conclusion, embryo and fetal liver-bud-derived cells during the periods of 12.5 and 14.5 days, showed expression profile of progenitor cells, cell activity and hematopoietic function in culture.
Collapse
Affiliation(s)
- Dara Rúbia Souza Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil; Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of Sao Paulo (USP), Pangaré Street 100, University City, Butanta, SP 05360-130, Brazil
| | - Amanda Olivotti Ferreira
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil
| | - Mônica Duarte da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of Sao Paulo (USP), Pangaré Street 100, University City, Butanta, SP 05360-130, Brazil; Department of Biochemistry, Chemistry Institute, University of Sao Paulo (USP), São Paulo, SP 05508-900, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil.
| |
Collapse
|
2
|
Deepak HB, Shreekrishna N, Sameermahmood Z, Anand NN, Hulgi R, Suresh J, Khare S, Dhakshinamoorthy S. An in vitro model of hepatic steatosis using lipid loaded induced pluripotent stem cell derived hepatocyte like cells. J Biol Methods 2020; 7:e135. [PMID: 32934967 PMCID: PMC7483829 DOI: 10.14440/jbm.2020.330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatic steatosis is a metabolic disease, characterized by selective and progressive accumulation of lipids in liver, leading to progressive non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and cirrhosis. The existing in vitro models of hepatic steatosis to elucidate the molecular mechanisms behind the onset of hepatic steatosis and to profile small molecule modulators uses lipid loaded primary hepatocytes, and cell lines like HepG2. The limitation of these models includes high variability between the different donor samples, reproducibility, and translatability to physiological context. An in vitro human hepatocyte derived model that mimics the pathophysiological changes seen in hepatic steatosis may provide an alternative tool for pre-clinical drug discovery research. We report the development of an in vitro experimental model of hepatic steatosis using human induced pluripotent stem cell (iPSC) derived hepatocytes like cells (HLC), loaded with lipids. Our data suggests that HLC carry some of the functional characteristics of primary hepatocytes and are amenable for development of an in vitro steatosis model using lipid loading method. The in vitro experimental model of hepatic steatosis was further characterized using biomarker analysis and validated using telmisartan. With some refinement and additional validation, our in vitro steatosis model system may be useful for profiling small molecule inhibitors and studying the mechanism of action of new drugs.
Collapse
Affiliation(s)
| | | | | | | | - Raghotham Hulgi
- Discovery Biology and Pharmacology, Jubilant Biosys Ltd., Bangalore 560022, India
| | - Juluri Suresh
- Discovery Biology and Pharmacology, Jubilant Biosys Ltd., Bangalore 560022, India
| | - Sonal Khare
- Discovery Biology and Pharmacology, Jubilant Biosys Ltd., Bangalore 560022, India
| | | |
Collapse
|
3
|
Ryu B, Kim CY, Oh H, Kim U, Kim J, Jung CR, Lee BH, Lee S, Chang SN, Lee JM, Chung HM, Park JH. Development of an alternative zebrafish model for drug-induced intestinal toxicity. J Appl Toxicol 2017; 38:259-273. [PMID: 29027214 DOI: 10.1002/jat.3520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - C-Yoon Kim
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Hyung-Min Chung
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| |
Collapse
|
4
|
Garg A, Zhang X. Lacrimal gland development: From signaling interactions to regenerative medicine. Dev Dyn 2017; 246:970-980. [PMID: 28710815 DOI: 10.1002/dvdy.24551] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/13/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
The lacrimal gland plays a pivotal role in keeping the ocular surface lubricated, and protecting it from environmental exposure and insult. Dysfunction of the lacrimal gland results in deficiency of the aqueous component of the tear film, which can cause dryness of the ocular surface, also known as the aqueous-deficient dry eye disease. Left untreated, this disease can lead to significant morbidity, including frequent eye infections, corneal ulcerations, and vision loss. Current therapies do not treat the underlying deficiency of the lacrimal gland, but merely provide symptomatic relief. To develop more sustainable and physiological therapies, such as in vivo lacrimal gland regeneration or bioengineered lacrimal gland implants, a thorough understanding of lacrimal gland development at the molecular level is of paramount importance. Based on the structural and functional similarities between rodent and human eye development, extensive studies have been undertaken to investigate the signaling and transcriptional mechanisms of lacrimal gland development using mouse as a model system. In this review, we describe the current understanding of the extrinsic signaling interactions and the intrinsic transcriptional network governing lacrimal gland morphogenesis, as well as recent advances in the field of regenerative medicine aimed at treating dry eye disease. Developmental Dynamics 246:970-980, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| |
Collapse
|
5
|
Ishikawa T. Next-generation sequencing traces human induced pluripotent stem cell lines clonally generated from heterogeneous cancer tissue. World J Stem Cells 2017; 9:77-88. [PMID: 28596815 PMCID: PMC5440771 DOI: 10.4252/wjsc.v9.i5.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate genotype variation among induced pluripotent stem cell (iPSC) lines that were clonally generated from heterogeneous colon cancer tissues using next-generation sequencing.
METHODS Human iPSC lines were clonally established by selecting independent single colonies expanded from heterogeneous primary cells of S-shaped colon cancer tissues by retroviral gene transfer (OCT3/4, SOX2, and KLF4). The ten iPSC lines, their starting cancer tissues, and the matched adjacent non-cancerous tissues were analyzed using next-generation sequencing and bioinformatics analysis using the human reference genome hg19. Non-synonymous single-nucleotide variants (SNVs) (missense, nonsense, and read-through) were identified within the target region of 612 genes related to cancer and the human kinome. All SNVs were annotated using dbSNP135, CCDS, RefSeq, GENCODE, and 1000 Genomes. The SNVs of the iPSC lines were compared with the genotypes of the cancerous and non-cancerous tissues. The putative genotypes were validated using allelic depth and genotype quality. For final confirmation, mutated genotypes were manually curated using the Integrative Genomics Viewer.
RESULTS In eight of the ten iPSC lines, one or two non-synonymous SNVs in EIF2AK2, TTN, ULK4, TSSK1B, FLT4, STK19, STK31, TRRAP, WNK1, PLK1 or PIK3R5 were identified as novel SNVs and were not identical to the genotypes found in the cancer and non-cancerous tissues. This result suggests that the SNVs were de novo or pre-existing mutations that originated from minor populations, such as multifocal pre-cancer (stem) cells or pre-metastatic cancer cells from multiple, different clonal evolutions, present within the heterogeneous cancer tissue. The genotypes of all ten iPSC lines were different from the mutated ERBB2 and MKNK2 genotypes of the cancer tissues and were identical to those of the non-cancerous tissues and that found in the human reference genome hg19. Furthermore, two of the ten iPSC lines did not have any confirmed mutated genotypes, despite being derived from cancerous tissue. These results suggest that the traceability and preference of the starting single cells being derived from pre-cancer (stem) cells, stroma cells such as cancer-associated fibroblasts, and immune cells that co-existed in the tissues along with the mature cancer cells.
CONCLUSION The genotypes of iPSC lines derived from heterogeneous cancer tissues can provide information on the type of starting cell that the iPSC line was generated from.
Collapse
|
6
|
Fukuda T, Takayama K, Hirata M, Liu YJ, Yanagihara K, Suga M, Mizuguchi H, Furue MK. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res 2017; 352:333-345. [PMID: 28215634 DOI: 10.1016/j.yexcr.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; K-CONNEX, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhi Hirata
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yu-Jung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
7
|
Matsumoto T, Takami T, Sakaida I. Cell transplantation as a non-invasive strategy for treating liver fibrosis. Expert Rev Gastroenterol Hepatol 2017; 10:639-48. [PMID: 26691057 DOI: 10.1586/17474124.2016.1134313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advancements in antiviral drugs have enabled control of viral hepatitis; yet, many patients with liver cirrhosis (LC) are awaiting liver transplants. Liver transplantation yields dramatic therapeutic effects, but problems such as shortage of donors, surgical invasiveness, immunological rejection and costs, limit the number of transplantations. Advances in liver regeneration therapy through cell transplantation as a non-invasive treatment for cirrhosis will supplement these restrictions to the number of liver transplants. Clinical trials for LC have included hematopoietic stem cell mobilization by administration of granulocyte colony-stimulating factor, infusion of autologous bone marrow cells, and administration of autologous mesenchymal stem cells derived from bone marrow or umbilical cord. Several recently reported randomized controlled studies have shown the effectiveness of these approaches. However, to promote implementation of new liver regeneration therapies, it is important to develop a system whereby cell therapies with ensured safety can be approved quickly.
Collapse
Affiliation(s)
- Toshihiko Matsumoto
- a Department of Gastroenterology & Hepatology , Yamaguchi University Graduate School of Medicine , Yamaguchi , Japan.,b Department of Oncology and Laboratory Medicine , Yamaguchi University Graduate School of Medicine , Yamaguchi , Japan
| | - Taro Takami
- a Department of Gastroenterology & Hepatology , Yamaguchi University Graduate School of Medicine , Yamaguchi , Japan
| | - Isao Sakaida
- a Department of Gastroenterology & Hepatology , Yamaguchi University Graduate School of Medicine , Yamaguchi , Japan
| |
Collapse
|
8
|
Inflammatory cytokine IL6 cooperates with CUDR to aggravate hepatocyte-like stem cells malignant transformation through NF-κB signaling. Sci Rep 2016; 6:36843. [PMID: 27833137 PMCID: PMC5104983 DOI: 10.1038/srep36843] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022] Open
Abstract
Inflammatory cytokines and lncRNAs are closely associated with tumorigenesis. Herein, we reveal inflammatory cytokines IL6 cooperates with long noncoding RNA CUDR to trigger the malignant transformation of human embryonic stem cells-derived hepatocyte-like stem cells. Mechanistically, IL6 cooperates with CUDR to cause MELLT3 to interact with SUV39h1 mRNA3′UTR and promote SUV39h1 expression. Moreover, the excessive SUV39h1 also increases tri-methylation of histone H3 on nineth lysine (H3K9me3). Intriguingly, under inflammatory conditions, H3K9me3 promotes the excessive expression and phosphorylation of NF-κB, and in turn, phorsphorylated NF-κB promotes the expression and phosphorylation of Stat3. Furthermore, that the phosphorylated Stat3 loads onto the promoter region of miRs and lncRNAs. Ultimately, the abnormal expression of miRs and lncRNAs increased telomerase activity, telomere length and microsatellite instability (MSI), leading to malignant transformation of hepatocyte-like stem cells.
Collapse
|
9
|
Yanagihara K, Liu Y, Kanie K, Takayama K, Kokunugi M, Hirata M, Fukuda T, Suga M, Nikawa H, Mizuguchi H, Kato R, Furue MK. Prediction of Differentiation Tendency Toward Hepatocytes from Gene Expression in Undifferentiated Human Pluripotent Stem Cells. Stem Cells Dev 2016; 25:1884-1897. [PMID: 27733097 PMCID: PMC5165660 DOI: 10.1089/scd.2016.0099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Functional hepatocytes derived from human pluripotent stem cells (hPSCs) have potential as tools for predicting drug-induced hepatotoxicity in the early phases of drug development. However, the propensity of hPSC lines to differentiate into specific lineages is reported to differ. The ability to predict low propensity of hPSCs to differentiate into hepatocytes would facilitate the selection of useful hPSC clones and substantially accelerate development of hPSC-derived hepatocytes for pharmaceutical research. In this study, we compared the expression of genes associated with hepatic differentiation in five hPSC lines including human ES cell line, H9, which is known to differentiate into hepatocytes, and an hPSC line reported with a poor propensity for hepatic differentiation. Genes distinguishing between undifferentiated hPSCs, hPSC-derived hepatoblast-like differentiated cells, and primary human hepatocytes were drawn by two-way cluster analysis. The order of expression levels of genes in undifferentiated hPSCs was compared with that in hPSC-derived hepatoblast-like cells. Three genes were selected as predictors of low propensity for hepatic differentiation. Expression of these genes was investigated in 23 hPSC clones. Review of representative cells by induction of hepatic differentiation suggested that low prediction scores were linked with low hepatic differentiation. Thus, our model using gene expression ranking and bioinformatic analysis could reasonably predict poor differentiation propensity of hPSC lines.
Collapse
Affiliation(s)
- Kana Yanagihara
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Yujung Liu
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Kei Kanie
- 2 Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Kazuo Takayama
- 3 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,4 The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University , Kyoto, Japan .,5 Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Minako Kokunugi
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan .,6 Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Mitsuhi Hirata
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Takayuki Fukuda
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Mika Suga
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Hiroki Nikawa
- 6 Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Hiroyuki Mizuguchi
- 3 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,5 Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan .,7 Global Center for Medical Engineering and Informatics, Osaka University , Osaka, Japan
| | - Ryuji Kato
- 2 Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Miho K Furue
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| |
Collapse
|
10
|
Kodama N, Iwao T, Katano T, Ohta K, Yuasa H, Matsunaga T. Characteristic Analysis of Intestinal Transport in Enterocyte-Like Cells Differentiated from Human Induced Pluripotent Stem Cells. Drug Metab Dispos 2016; 44:0. [PMID: 27417181 DOI: 10.1124/dmd.116.069336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/13/2016] [Indexed: 12/25/2022] Open
Abstract
We previously demonstrated that differentiated enterocytes from human induced pluripotent stem (iPS) cells exhibited drug-metabolizing activities and cytochrome P450 CYP3A4 inducibility. The aim of this study was to apply human iPS cell-derived enterocytes in pharmacokinetic studies by investigating the characteristics of drug transport into enterocyte-like cells. Human iPS cells cultured on feeder cells were differentiated into endodermal cells using activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, epidermal growth factor and small-molecule compounds induced the maturation of the intestinal stem cell-like cells. After differentiation, we performed transepithelial electrical resistance (TEER) measurements, immunofluorescence staining, and transport studies. TEER values increased in a time-dependent manner and reached approximately 100 Ω × cm(2) Efflux transport of Hoechst 33342, a substrate of breast cancer resistance protein (BCRP), was observed and inhibited by the BCRP inhibitor Ko143. The uptake of peptide transporter 1 substrate glycylsarcosine was also confirmed and suppressed when the temperature was lowered to 4°C. Using immunofluorescence staining, villin and Na(+)-K(+) ATPase were expressed. These results suggest that human iPS cell-derived enterocytes had loose tight junctions, polarity, as well as uptake and efflux transport functions. In addition, the rank order of apparent membrane permeability coefficient (Papp) values of these test compounds across the enterocyte-like cell membrane corresponded to the fraction absorbance (Fa) values. Therefore, differentiated enterocytes from human iPS cells may provide a useful comprehensive evaluation model of drug transport and metabolism in the small intestine.
Collapse
Affiliation(s)
- Nao Kodama
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Takahiro Katano
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Kinya Ohta
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Hiroaki Yuasa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| |
Collapse
|
11
|
Seno A, Kasai T, Ikeda M, Vaidyanath A, Masuda J, Mizutani A, Murakami H, Ishikawa T, Seno M. Characterization of Gene Expression Patterns among Artificially Developed Cancer Stem Cells Using Spherical Self-Organizing Map. Cancer Inform 2016; 15:163-78. [PMID: 27559294 PMCID: PMC4988459 DOI: 10.4137/cin.s39839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/15/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines, whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors (OCT3/4, SOX2, and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes (POU5F1, SOX2, NANOG, LIN28, and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore, with supervised method, sSOM nominated TMED9, RNASE1, NGFR, ST3GAL1, TNS4, BTG2, SLC16A3, CD177, CES1, GDF15, STMN2, FAM20A, NPPB, CD99, MYL7, PRSS23, AHNAK, and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC, suggesting the gene signature of the CSCs.
Collapse
Affiliation(s)
- Akimasa Seno
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Tomonari Kasai
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Masashi Ikeda
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Arun Vaidyanath
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Junko Masuda
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Akifumi Mizutani
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Hiroshi Murakami
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Tetsuya Ishikawa
- Cell Biology, Core Facilities for Research and Innovative Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.; Central Animal Division, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
12
|
Massie I, Dietrich J, Roth M, Geerling G, Mertsch S, Schrader S. Development of Causative Treatment Strategies for Lacrimal Gland Insufficiency by Tissue Engineering and Cell Therapy. Part 2: Reconstruction of Lacrimal Gland Tissue: What Has Been Achieved So Far and What Are the Remaining Challenges? Curr Eye Res 2016; 41:1255-1265. [DOI: 10.3109/02713683.2016.1151531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isobel Massie
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Jana Dietrich
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Mathias Roth
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Gerd Geerling
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sonja Mertsch
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Stefan Schrader
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivation. Arch Immunol Ther Exp (Warsz) 2016; 64:349-70. [PMID: 26939778 PMCID: PMC5021740 DOI: 10.1007/s00005-016-0385-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Developing procedures for the derivation of human pluripotent stem cells (PSCs) gave rise to novel pathways into regenerative medicine research. For many years, stem cells have attracted attention as a potentially unlimited cell source for cellular therapy in neurodegenerative disorders, cardiovascular diseases, and spinal cord injuries, for example. In these studies, adult stem cells were insufficient; therefore, many attempts were made to obtain PSCs by other means. This review discusses key issues concerning the techniques of pluripotent cell acquisition. Technical and ethical issues hindered the medical use of somatic cell nuclear transfer and embryonic stem cells. Therefore, induced PSCs (iPSCs) emerged as a powerful technique with great potential for clinical applications, patient-specific disease modelling and pharmaceutical studies. The replacement of viral vectors or the administration of analogous proteins or chemical compounds during cell reprogramming are modifications designed to reduce tumorigenesis risk and to augment the procedure efficiency. Intensified analysis of new PSC lines revealed other barriers to overcome, such as epigenetic memory, disparity between human and mouse pluripotency, and variable response to differentiation of some iPSC lines. Thus, multidimensional verification must be conducted to fulfil strict clinical-grade requirements. Nevertheless, the first clinical trials in patients with spinal cord injury and macular dystrophy were recently carried out with differentiated iPSCs, encouraging alternative strategies for potential autologous cellular therapies.
Collapse
|
14
|
Karabekian Z, Ding H, Stybayeva G, Ivanova I, Muselimyan N, Haque A, Toma I, Posnack NG, Revzin A, Leitenberg D, Laflamme MA, Sarvazyan N. HLA Class I Depleted hESC as a Source of Hypoimmunogenic Cells for Tissue Engineering Applications. Tissue Eng Part A 2015. [PMID: 26218149 DOI: 10.1089/ten.tea.2015.0105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Rapidly improving protocols for the derivation of autologous cells from stem cell sources is a welcome development. However, there are many circumstances when off-the-shelf universally immunocompatible cells may be needed. Embryonic stem cells (ESCs) provide a unique opportunity to modify the original source of differentiated cells to minimize their rejection by nonautologous hosts. HYPOTHESIS Immune rejection of nonautologous human embryonic stem cell (hESC) derivatives can be reduced by downregulating human leukocyte antigen (HLA) class I molecules, without affecting the ability of these cells to differentiate into specific lineages. METHODS AND RESULTS Beta-2-microglobulin (B2M) expression was decreased by lentiviral transduction using human anti-HLA class I light-chain B2M short hairpin RNA. mRNA levels of B2M were decreased by 90% in a RUES2-modified hESC line, as determined by quantitative real time-polymerase chain reaction analysis. The transduced cells were selected under puromycin pressure and maintained in an undifferentiated state. The latter was confirmed by Oct4 and Nanog expression, and by the formation of characteristic round-shaped colonies. B2M downregulation led to diminished HLA-I expression on the cell surface, as determined by flow cytometry. When used as target cells in a mixed lymphocyte reaction assay, transduced hESCs and their differentiated derivatives did not stimulate allogeneic T-cell proliferation. Using a cardiac differentiation protocol, transduced hESCs formed a confluent layer of cardiac myocytes and maintained a low level of B2M expression. Transduced hESCs were also successfully differentiated into a hepatic lineage, validating their capacity to differentiate into multiple lineages. CONCLUSIONS HLA-I depletion does not preclude hESC differentiation into cardiac or hepatic lineages. This methodology can be used to engineer tissue from nonautologous hESC sources with improved immunocompatibility.
Collapse
Affiliation(s)
- Zaruhi Karabekian
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia.,2 L.A.Orbeli Institute of Physiology, National Academy of Sciences , Yerevan, Armenia
| | - Hao Ding
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Gulnaz Stybayeva
- 3 Department of Biomedical Engineering, University of California Davis , Davis, California
| | - Irina Ivanova
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Narine Muselimyan
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Amranul Haque
- 3 Department of Biomedical Engineering, University of California Davis , Davis, California
| | - Ian Toma
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Nikki G Posnack
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Alexander Revzin
- 3 Department of Biomedical Engineering, University of California Davis , Davis, California
| | - David Leitenberg
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Michael A Laflamme
- 4 Institute for Stem Cell and Regenerative Medicine, Center for Cardiovascular Biology, University of Washington , Seattle, Washington
| | - Narine Sarvazyan
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| |
Collapse
|
15
|
Two Effective Routes for Removing Lineage Restriction Roadblocks: From Somatic Cells to Hepatocytes. Int J Mol Sci 2015; 16:20873-95. [PMID: 26340624 PMCID: PMC4613233 DOI: 10.3390/ijms160920873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
The conversion of somatic cells to hepatocytes has fundamentally re-shaped traditional concepts regarding the limited resources for hepatocyte therapy. With the various induced pluripotent stem cell (iPSC) generation routes, most somatic cells can be effectively directed to functional stem cells, and this strategy will supply enough pluripotent material to generate promising functional hepatocytes. However, the major challenges and potential applications of reprogrammed hepatocytes remain under investigation. In this review, we provide a summary of two effective routes including direct reprogramming and indirect reprogramming from somatic cells to hepatocytes and the general potential applications of the resulting hepatocytes. Through these approaches, we are striving toward the goal of achieving a robust, mature source of clinically relevant lineages.
Collapse
|