1
|
Morita D, Kuroda T. Recent Antimicrobial Resistance Situation and Mechanisms of Resistance to Key Antimicrobials in Enterotoxigenic Escherichia coli. Biol Pharm Bull 2025; 48:222-229. [PMID: 40024692 DOI: 10.1248/bpb.b24-00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in developing countries and is regularly imported into developed countries as a major cause of traveler's diarrhea. ETEC is usually self-limiting and not necessarily treated with antimicrobials, although antimicrobial treatment is recommended in malnourished children, severe cases, and traveler's diarrhea. However, resistant strains to representative therapeutic agents such as ciprofloxacin and azithromycin have been reported in recent years, and multidrug-resistant ETEC has also emerged. This review discusses the recent antimicrobial resistance surveillance in ETEC and the mechanisms of resistance to major antimicrobials.
Collapse
Affiliation(s)
- Daichi Morita
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Teruo Kuroda
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
2
|
Garrido G, Garrido-Suárez BB, Martínez-Tapia N, Valdés-González M, Ortega-Mardones A. Antidiarrheal effect of Psidium guajava L. extract in acute diarrhea: a systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7731-7753. [PMID: 38578668 DOI: 10.1002/jsfa.13515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/21/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Acute diarrheal diseases are a leading cause of childhood mortality and morbidity worldwide. Psidium guajava has been globally used for its antidiarrheal potential. We conducted a systematic review of scientific articles published up to the year 2021, which included in vivo pre-clinical tests and clinical trials involving patients with acute infectious diarrhea to verify the antidiarrheal, antibacterial and antispasmodic effects of galenic preparations or phytopharmaceuticals from P. guajava. PRISMA and Rayyan were used as tools for the selection of studies collected in four databases (Pubmed, Scopus, Web of Science and Science Direct). The keywords used to carry out the search were: 'Psidium guajava', 'guava', 'antidiarrhe*' and 'diarrhe*', joined by Boolean operators 'OR' or 'AND'. The characteristics of studies in animal models of acute diarrhea induction, as well as in vivo and in vitro motility and microbiological tests linked with its main pathophysiological mechanisms, were collected. Twenty-three articles were included. Twenty (87%) of these reported heterogenic preclinical studies, predominating pharmacological studies of efficacy against conventional antidiarrheal agents, which utilized relevant outcomes and models of infectious diarrhea from the top pathogens in the clinic along with classical castor oil-induced diarrhea associated with motility tests. Only three articles (13%) corresponded to clinical trials investigating the efficacy, dose and safety of these preparations. Most studies reported positive results and significant mechanistic evidence from antibacterial, anti-motility, anti-secretory and protective/anti-inflammatory perspectives. However, further studies are needed to define the clinical significance and safety treatment with P. guajava extracts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | | | - Nicolás Martínez-Tapia
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Marisela Valdés-González
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Andrea Ortega-Mardones
- Departamento Procesos de Diagnóstico y Evaluación, Facultad Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
3
|
Park JY, Cho SH. Production of monoclonal antibody of heat-labile toxin A subunit to identify enterotoxigenic Escherichia coli by epitope mapping using synthetic peptides. Front Immunol 2023; 14:1152910. [PMID: 37275900 PMCID: PMC10232981 DOI: 10.3389/fimmu.2023.1152910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea through two enterotoxins, a heat-labile toxin and a heat-stable toxin. These toxins alter the cellular signaling pathways, ultimately triggering an increase in chloride secretion and watery diarrhea. Objective For the development of an ETEC vaccine, we attempted to construct a peptide-specific monoclonal antibody library against heat-labile enterotoxin A subunit (LT-A) by epitope mapping using synthetic peptides. Methods Sera produced by five mice immunized with recombinant LT-A protein were examined for specific recognition with synthetic 15-mer and 34-mer peptides of LT-A proteins using enzyme-linked immunosorbent assay. The analysis revealed that the synthetic peptides number 8, 16, 24, 33, 36, 38, and 39 reacted with an anti-LT-A polyclonal antibody. For the possible prediction of LT-A epitopes, each full-length protein sequence was subjected to BCPreds analysis and three-dimensional protein structure analysis. The data showed that three peptides (synthetic peptide numbers: 33, 36, and 38-39) have identical antigenic specificities with LT-A protein, suggesting the usefulness of these linear peptide epitopes. Results Based on these peptides, we produced monoclonal antibodies to improve the specificity of LT-A detection. Monoclonal antibodies produced from two peptides (numbers 33 and 36) showed affinity for an LT-A recombinant antigen. Moreover, peptide epitope prediction analysis showed that the sites of the three peptides were identical to those exhibiting actual antigenicity. Also, it was confirmed that the amino acid sequence that actually showed antigenicity was included in the peptide predicted only by ETEC-LT-A-33. Also, the specificity of the antibody for ETEC-LT-A-33 was validated using bacterial cells, and the neutralizing effect of the antibody was determined by assessing cytokine release in infected HCT-8 cells. Conclusion The monoclonal antibodies produced in this study are useful toolsfor vaccine production against ETEC and can be used to identify peptide antigencandidates.
Collapse
Affiliation(s)
- Jun-Young Park
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seung-Hak Cho
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Magaña-Lizárraga JA, Gómez-Gil B, Rendón-Maldonado JG, Delgado-Vargas F, Vega-López IF, Báez-Flores ME. Genomic Profiling of Antibiotic-Resistant Escherichia coli Isolates from Surface Water of Agricultural Drainage in North-Western Mexico: Detection of the International High-Risk Lineages ST410 and ST617. Microorganisms 2022; 10:microorganisms10030662. [PMID: 35336237 PMCID: PMC8948617 DOI: 10.3390/microorganisms10030662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aquatic environments are recognized as one of the main reservoirs for the emergence and dissemination of high-risk lineages of multidrug-resistant (MDR) bacteria of public health concern. However, the genomic characteristics of antibiotic-resistant Escherichia coli isolates from aquatic origins remain limited. Herein, we examined the antibiotic resistance and virulence genomic profiles of three E. coli recovered from surface water in northwest Mexico. Antimicrobial susceptibility testing, whole-genome sequencing (WGS), and in-depth in silico analysis were performed. Two E. coli exhibited MDR phenotypes. WGS-based typing revealed genetic diversity, and phylogenetic analysis corroborated a notable divergent relationship among the studied E. coli. One E. coli strain, harboring enterotoxigenic and extraintestinal pathogenic-associated virulence genes, was assigned to the ST4 lineage. MDR E. coli, belonging to the international high-risk clones ST410 and ST617, carried genes and mutations conferring resistance to aminoglycosides, β-lactams, quinolones, sulfonamides, tetracyclines, and trimethoprim. This study describes, for the first time, the detection and genomic profiling of high-risk lineages of E. coli ST410 and ST617 from surface water in Mexico. Additionally, our results underscore the role of surface water as a reservoir for critical pathogenic and MDR E. coli clones and the need for the surveillance and monitoring of aquatic environments via WGS from the One Health perspective.
Collapse
Affiliation(s)
- José Antonio Magaña-Lizárraga
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico; (J.A.M.-L.); (J.G.R.-M.); (F.D.-V.)
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, AP.711, Mazatlan 82112, Mexico;
| | - José Guadalupe Rendón-Maldonado
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico; (J.A.M.-L.); (J.G.R.-M.); (F.D.-V.)
| | - Francisco Delgado-Vargas
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico; (J.A.M.-L.); (J.G.R.-M.); (F.D.-V.)
| | | | - María Elena Báez-Flores
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico; (J.A.M.-L.); (J.G.R.-M.); (F.D.-V.)
- Correspondence: ; Tel.: +52-667-752-0460
| |
Collapse
|
5
|
Lόpez-Vélez R, Lebens M, Bundy L, Barriga J, Steffen R. Bacterial travellers' diarrhoea: A narrative review of literature published over the past 10 years. Travel Med Infect Dis 2022; 47:102293. [PMID: 35247581 DOI: 10.1016/j.tmaid.2022.102293] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
Abstract
Travellers' diarrhoea (TD) is the most frequent illness experienced by international travellers to lower-income countries with bacterial agents considered to account for 80-90% of cases. In this review, we summarise evidence published on bacterial TD over the past 10 years, focusing on the epidemiology and aetiology of TD. Diarrhoeagenic Escherichia coli (DEC) continue to be the most commonly implicated bacteria in TD, although Enteropathogenic E. coli (EPEC) and Enteroaggregative E. coli (EAEC) now appear to be predominant where Enterotoxigenic E. coli (ETEC) was previously considered most prevalent globally. Where fluroquinolone resistance had primarily been documented for Campylobacter in Southeast Asia, widespread resistance has been observed in most regions of the world for multiple enteropathogens, including Shigella, Salmonella, ETEC and EAEC. Implementation of novel molecular methods for pathogen detection has led to identification of bacterial pathogens, including Clostridium difficile (with and without the use of prior antibiotics), Arcobacter species and Bacteroides fragilis, as aetiological agents in TD. The widespread resistance to first-line antibiotics in multiple bacterial enteropathogens warrants continued surveillance and re-evaluation of current treatment practices. Further investigations are required to determine the prevalence and geographical distribution of bacterial enteropathogens that have been more recently implicated in TD.
Collapse
Affiliation(s)
- Rogelio Lόpez-Vélez
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, 28034, Madrid, Spain.
| | - Michael Lebens
- Department of Microbiology and Immunology, University of Gothenburg, Box 435, SE-40530, Gothenburg, Sweden.
| | - Leah Bundy
- Elements Communications Ltd, Westerham, TN16 1RQ, UK.
| | - Juan Barriga
- Department of Medical Affairs Europe, Emergent BioSolutions, 1455, Madrid, Spain.
| | - Robert Steffen
- Epidemiology, Biostatistics and Prevention Institute, World Health Organization Collaborating Centre for Travelers' Health, University of Zurich, Hirschengraben 84, CH-8001, Zurich, Switzerland; Epidemiology, Human Genetics and Environmental Sciences Division, University of Texas School of Public Health, Houston, TX 77030, Texas, USA.
| |
Collapse
|
6
|
Jarocki VM, Heß S, Anantanawat K, Berendonk TU, Djordjevic SP. Multidrug-Resistant Lineage of Enterotoxigenic Escherichia coli ST182 With Serotype O169:H41 in Airline Waste. Front Microbiol 2021; 12:731050. [PMID: 34557175 PMCID: PMC8454413 DOI: 10.3389/fmicb.2021.731050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the primary aetiologic agent of traveller’s diarrhoea and a significant cause of diarrhoeal disease and death in developing countries. ETEC O169:H41 strains are known to cause both traveller’s diarrhoea and foodborne outbreaks in developed countries and are cause for concern. Here, whole-genome sequencing (WGS) was used to assemble 46 O169:H41 (ST182) E. coli draft genomes derived from two airplane waste samples sourced from a German international airport. The ST182 genomes were compared with all 84 publicly available, geographically diverse ST182 genomes to construct a core genome-based phylogenetic tree. ST182 isolates were all phylogroup E, the majority serotype O169:H41 (n = 121, 93%) and formed five major clades. The airplane waste isolates differed by an average of 15 core SNPs (range 0–45) but their accessory genome content was diverse. While uncommon in other ST182 genomes, all airplane-derived ST182 isolates carried: (i) extended-spectrum β-lactamase gene blaCTX–M–15 notably lacking the typical adjacent ISEcp1; (ii) qnrS1 and the S83L mutation in gyrA, both conferring resistance to fluoroquinolones; and (iii) a class 1 integron structure (IS26-intI1Δ648-dfrA17-aadA5-qacEΔ1-sul1-ORF-srpC-padR-IS6100-mphR-mrx-mphA-IS26) identified previously in major extraintestinal pathogenic E. coli STs but not in ETEC. ST182 isolates carried ETEC-specific virulence factors STp + CS6. Adhesin/invasin tia was identified in 89% of aircraft ST182 isolates (vs 23%) and was located on a putative genomic island within a hotspot region for various insertions including PAI I536 and plasmid-associated transposons. The most common plasmid replicons in this collection were IncFII (100%; F2:A-:B-) and IncB/O/K/Z (89%). Our data suggest that potentially through travel, E. coli ST182 are evolving a multidrug-resistant profile through the acquisition of class 1 integrons and different plasmids.
Collapse
Affiliation(s)
- Veronica M Jarocki
- iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Stefanie Heß
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | - Kay Anantanawat
- iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Thomas U Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
7
|
Singh T, Das S, Ramachandran VG, Dar SA, Snehaa K, Saha R, Shah D. Spectrum of diarrhoeagenic Escherichia coli in paediatric population suffering from diarrhoea and as commensals in healthy children. Indian J Med Microbiol 2018; 35:204-210. [PMID: 28681807 DOI: 10.4103/ijmm.ijmm_16_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Diarrhoeagenic Escherichia coli (DEC) is associated with early death of children in developing countries and are being identified now as an important evolving pathogen. The objective of this study was to perform multiplex polymerase chain reaction (PCR) for simultaneous detection of six categories of DEC in two sets of PCR reactions using 11 virulent genes. MATERIALS AND METHODS During 1-year study period, forty isolates each from outpatient, inpatient and healthy groups were collected from children. E. coli was identified using conventional biochemical methods. DNA extraction was done using kit, and the extracted DNA was used as a template for multiplex PCR. RESULTS Virulent genes of DEC were detected in 106 (88.33%) samples. Overall, elt and est were detected in 8.33% and 30.83% of specimens; typical, atypical enteropathogenic E. coli and bfp were detected in 13.33%, 29.16% and 19.16% specimens; eagg was detected in 39.16% and east in 13.33% specimens and stx and hyla were isolated in 1.66% specimens each. While diffusely adherent E. coli and enteroinvasive E. coli genes were not isolated. CONCLUSION Multiplex PCR is a rapid method for the simultaneous detection of 11 virulent genes of DEC at a time and it will provide a platform in understanding the diarrheal diseases in a more improved manner.
Collapse
Affiliation(s)
- Taru Singh
- Department of Microbiology, UCMS, Guru Teg Bahadur Hospital, New Delhi, India
| | - Shukla Das
- Department of Microbiology, UCMS, Guru Teg Bahadur Hospital, New Delhi, India
| | - V G Ramachandran
- Department of Microbiology, UCMS, Guru Teg Bahadur Hospital, New Delhi, India
| | - Sajad Ahmad Dar
- Department of Microbiology, UCMS, Guru Teg Bahadur Hospital, New Delhi, India
| | - K Snehaa
- Department of Microbiology, UCMS, Guru Teg Bahadur Hospital, New Delhi, India
| | - Rumpa Saha
- Department of Microbiology, UCMS, Guru Teg Bahadur Hospital, New Delhi, India
| | - Dheeraj Shah
- Department of Paediatrics, UCMS, Guru Teg Bahadur Hospital, New Delhi, India
| |
Collapse
|