1
|
Le NT, Dunleavy MW, Zhou W, Bhatia SS, Kumar RD, Woo ST, Ramirez-Pulido G, Ramakrishnan KS, El-Hashash AH. Stem Cell Therapy for Myocardial Infarction Recovery: Advances, Challenges, and Future Directions. Biomedicines 2025; 13:1209. [PMID: 40427036 PMCID: PMC12109359 DOI: 10.3390/biomedicines13051209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity worldwide, resulting from ischemic damage and necrosis to cardiomyocytes. While the standard treatment regimen for MI can be successful in restoring coronary perfusion, it typically does not resolve myocardial damage, which can leave patients particularly vulnerable to complications such as heart failure or electrical conduction abnormalities. Stem cell therapies offer a promising novel approach aimed at restoring cardiac function and decreasing the incidence of functional complications after an MI. This review used a literature search to evaluate the current landscape of stem cell therapy for post-MI recovery and focuses on the stem cell candidates for MI recovery therapy, delivery methods of such treatment, and their effectiveness. Both preclinical and clinical trials have demonstrated the safety of stem cells, but have struggled with limited cell retention, inconsistent efficacy, and survival. Mechanisms are employed by stem cells to promote regeneration, such as paracrine signaling, angiogenesis, and structural remodeling, in addition to the various stem cell delivery methods, including intracoronary infusion, direct myocardial injection, and intravenous administration. Furthermore, some strategies to combat past challenges in this field are discussed; for instance, extracellular vesicles, bioengineered patches, hydrogels, gene editing, and bioprinting. This article will provide a framework for future research in stem cell therapies and highlight the current progress in the field.
Collapse
Affiliation(s)
- Nicholas T. Le
- Department of Biology, College Station Campus, Texas A&M University, College Station, TX 77840, USA; (M.W.D.); (S.S.B.); (R.D.K.); (S.T.W.); (K.S.R.)
| | - Matthew W. Dunleavy
- Department of Biology, College Station Campus, Texas A&M University, College Station, TX 77840, USA; (M.W.D.); (S.S.B.); (R.D.K.); (S.T.W.); (K.S.R.)
| | - William Zhou
- Department of Health Promotion and Behavioral Sciences, University of Texas at Austin, Austin, TX 78712, USA;
| | - Sumrithbir S. Bhatia
- Department of Biology, College Station Campus, Texas A&M University, College Station, TX 77840, USA; (M.W.D.); (S.S.B.); (R.D.K.); (S.T.W.); (K.S.R.)
| | - Rebecca D. Kumar
- Department of Biology, College Station Campus, Texas A&M University, College Station, TX 77840, USA; (M.W.D.); (S.S.B.); (R.D.K.); (S.T.W.); (K.S.R.)
| | - Suyin T. Woo
- Department of Biology, College Station Campus, Texas A&M University, College Station, TX 77840, USA; (M.W.D.); (S.S.B.); (R.D.K.); (S.T.W.); (K.S.R.)
| | | | - Kaushik S. Ramakrishnan
- Department of Biology, College Station Campus, Texas A&M University, College Station, TX 77840, USA; (M.W.D.); (S.S.B.); (R.D.K.); (S.T.W.); (K.S.R.)
| | - Ahmed H. El-Hashash
- Department of Biology, Elizabeth City State University Campus of the University of North Carolina, Elizabeth City, NC 27909, USA
| |
Collapse
|
2
|
Miyagawa S, Kawamura T, Ito E, Takeda M, Iseoka H, Yokoyama J, Harada A, Mochizuki-Oda N, Imanishi-Ochi Y, Li J, Sasai M, Kitaoka F, Nomura M, Amano N, Takahashi T, Dohi H, Morii E, Sawa Y. Pre-clinical evaluation of the efficacy and safety of human induced pluripotent stem cell-derived cardiomyocyte patch. Stem Cell Res Ther 2024; 15:73. [PMID: 38475911 DOI: 10.1186/s13287-024-03690-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Cell- or tissue-based regenerative therapy is an attractive approach to treat heart failure. A tissue patch that can safely and effectively repair damaged heart muscle would greatly improve outcomes for patients with heart failure. In this study, we conducted a preclinical proof-of-concept analysis of the efficacy and safety of clinical-grade human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) patches. METHODS A clinical-grade hiPSC line was established using peripheral blood mononuclear cells from a healthy volunteer that was homozygous for human leukocyte antigens. The hiPSCs were differentiated into cardiomyocytes. The obtained hiPSC-CMs were cultured on temperature-responsive culture dishes for patch fabrication. The cellular characteristics, safety, and efficacy of hiPSCs, hiPSC-CMs, and hiPSC-CM patches were analyzed. RESULTS The hiPSC-CMs expressed cardiomyocyte-specific genes and proteins, and electrophysiological analyses revealed that hiPSC-CMs exhibit similar properties to human primary myocardial cells. In vitro and in vivo safety studies indicated that tumorigenic cells were absent. Moreover, whole-genome and exome sequencing revealed no genomic mutations. General toxicity tests also showed no adverse events posttransplantation. A porcine model of myocardial infarction demonstrated significantly improved cardiac function and angiogenesis in response to cytokine secretion from hiPSC-CM patches. No lethal arrhythmias were observed. CONCLUSIONS hiPSC-CM patches are promising for future translational research and may have clinical application potential for the treatment of heart failure.
Collapse
Affiliation(s)
- Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroko Iseoka
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Junya Yokoyama
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Noriko Mochizuki-Oda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukiko Imanishi-Ochi
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masao Sasai
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Fumiyo Kitaoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Masaki Nomura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Naoki Amano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Takahashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Department of Environmental Preventive Medicine (Yamada Bee Company, Inc.), Center for Preventive Medical Sciences, Chiba University, Chiba, 263-8522, Japan
| | - Hiromi Dohi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Eiichi Morii
- Department of Histopathology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Kankuri E, Karjalainen P, Vento A. Atrial Appendage-Derived Cardiac Micrografts: An Emerging Cellular Therapy for Heart Failure. CARDIOVASCULAR APPLICATIONS OF STEM CELLS 2023:155-181. [DOI: 10.1007/978-981-99-0722-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Nummi A, Pätilä T, Mulari S, Lampinen M, Nieminen T, Mäyränpää MI, Vento A, Harjula A, Kankuri E. Epicardial transplantation of autologous atrial appendage micrografts: evaluation of safety and feasibility in pigs after coronary artery occlusion. SCAND CARDIOVASC J 2022; 56:352-360. [PMID: 36002941 DOI: 10.1080/14017431.2022.2111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Objectives. Several approaches devised for clinical utilization of cell-based therapies for heart failure often suffer from complex and lengthy preparation stages. Epicardial delivery of autologous atrial appendage micrografts (AAMs) with a clinically used extracellular matrix (ECM) patch provides a straightforward therapy alternative. We evaluated the operative feasibility and the effect of micrografts on the patch-induced epicardial foreign body inflammatory response in a porcine model of myocardial infarction. Design. Right atrial appendages were harvested and mechanically processed into AAMs. The left anterior descending coronary artery was ligated to generate acute infarction. Patches of ECM matrix with or without AAMs were transplanted epicardially onto the infarcted area. Four pigs received the ECM and four received the AAMs patch. Cardiac function was studied by echocardiography both preoperatively and at 3-week follow-up. The primary outcome measures were safety and feasibility of the therapy administration, and the secondary outcome was the inflammatory response to ECM. Results. Neither AAMs nor ECM patch-related complications were detected during the follow-up time. AAMs patch preparation was feasible according to time and safety. Inflammation was greatly reduced in AAMs when compared with ECM patches as measured by the amount of infiltrated inflammatory cells and area of inflammation. Immunohistochemistry demonstrated an increased CD3+ cell density in the AAMs patch infiltrate. Conclusions. Epicardial AAMs transplantation demonstrated safety and clinical feasibility. The use of micrografts significantly inhibited ECM-induced foreign body inflammatory reactivity. Transplantation of AAMs shows good clinical applicability as adjuvant therapy to cardiac surgery and can suppress acute inflammatory reactivity.
Collapse
Affiliation(s)
- Annu Nummi
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tommi Pätilä
- Pediatric Cardiac Surgery, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Severi Mulari
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Milla Lampinen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomo Nieminen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Päijät-Häme Joint Authority for Health and Wellbeing, Lahti, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ari Harjula
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Miyagawa S, Kainuma S, Kawamura T, Suzuki K, Ito Y, Iseoka H, Ito E, Takeda M, Sasai M, Mochizuki-Oda N, Shimamoto T, Nitta Y, Dohi H, Watabe T, Sakata Y, Toda K, Sawa Y. Case report: Transplantation of human induced pluripotent stem cell-derived cardiomyocyte patches for ischemic cardiomyopathy. Front Cardiovasc Med 2022; 9:950829. [PMID: 36051285 PMCID: PMC9426776 DOI: 10.3389/fcvm.2022.950829] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/02/2022] [Indexed: 01/14/2023] Open
Abstract
Despite major therapeutic advances, heart failure, as a non-communicable disease, remains a life-threatening disorder, with 26 million patients worldwide, causing more deaths than cancer. Therefore, novel strategies for the treatment of heart failure continue to be an important clinical need. Based on preclinical studies, allogenic human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) patches have been proposed as a potential therapeutic candidate for heart failure. We report the implantation of allogeneic hiPSC-CM patches in a patient with ischemic cardiomyopathy (ClinicalTrials.gov, #jRCT2053190081). The patches were produced under clinical-grade conditions and displayed cardiogenic phenotypes and safety in vivo (severe immunodeficient mice) without any genetic mutations in cancer-related genes. The patches were then implanted via thoracotomy into the left ventricle epicardium of the patient under immunosuppressive agents. Positron emission tomography and computed tomography confirmed the potential efficacy and did not detect tumorigenesis in either the heart or other organs. The clinical symptoms improved 6 months after surgery, without any major adverse events, suggesting that the patches were well-tolerated. Furthermore, changes in the wall motion in the transplanted site were recovered, suggesting a favorable prognosis and the potential tolerance to exercise. This study is the first report of a successful transplant of hiPSC-CMs for severe ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Kainuma
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kota Suzuki
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshito Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroko Iseoka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masao Sasai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Noriko Mochizuki-Oda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomomi Shimamoto
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukako Nitta
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiromi Dohi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
6
|
Horie H, Hisatome I, Kurata Y, Yamamoto Y, Notsu T, Adachi M, Li P, Kuwabara M, Sakaguchi T, Kinugasa Y, Miake J, Koba S, Tsuneto M, Shirayoshi Y, Ninomiya H, Ito S, Kitakaze M, Yamamoto K, Yoshikawa Y, Nishimura M. α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats. Hypertens Res 2021; 45:283-291. [PMID: 34853408 DOI: 10.1038/s41440-021-00802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Cell-based therapy using adipose-derived stem cells (ADSCs) has emerged as a novel therapeutic approach to treat heart failure after myocardial infarction (MI). The purpose of this study was to determine whether inhibition of α1-adrenergic receptors (α1-ARs) in ADSCs attenuates ADSC sheet-induced improvements in cardiac functions and inhibition of remodeling after MI. ADSCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ADSCs, we determined the mRNA levels of vascular endothelial growth factor (VEGF)-A and α1-AR under normoxia or hypoxia and the effects of norepinephrine and an α1-blocker, doxazosin, on the mRNA levels of angiogenic factors. Hypoxia increased α1-AR and VEGF mRNA levels in ADSCs. Norepinephrine further increased VEGF mRNA expression under hypoxia; this effect was abolished by doxazosin. Tube formation of human umbilical vein endothelial cells was promoted by conditioned media of ADSCs treated with the α1 stimulant phenylephrine under hypoxia but not by those of ADSCs pretreated with phenylephrine plus doxazosin. In in vivo studies using rats with MI, transplanted ADSC sheets improved cardiac functions, facilitated neovascularization, and suppressed fibrosis after MI. These effects were abolished by doxazosin treatment. Pathway analysis from RNA sequencing data predicted significant upregulation of α1-AR mRNA expression in transplanted ADSC sheets and the involvement of α1-ARs in angiogenesis through VEGF. In conclusion, doxazosin abolished the beneficial effects of ADSC sheets on rat MI hearts as well as the enhancing effect of norepinephrine on VEGF expression in ADSCs, indicating that ADSC sheets promote angiogenesis and prevent cardiac dysfunction and remodeling after MI via their α1-ARs.
Collapse
Affiliation(s)
- Hiromu Horie
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan.
| | - Yasutaka Yamamoto
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Tomomi Notsu
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Maaya Adachi
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Peili Li
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Masanari Kuwabara
- Intensive Care Unit and Department of Cardiology, Toranomon Hospital, Tokyo, Japan
| | - Takuki Sakaguchi
- Division of Medical Education, Department of Medical Education, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshiharu Kinugasa
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Satoshi Koba
- Division of Integrative Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Motokazu Tsuneto
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yasushi Yoshikawa
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Motonobu Nishimura
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
7
|
Watanabe M, Horie H, Kurata Y, Inoue Y, Notsu T, Wakimizu T, Adachi M, Yamamoto K, Morikawa K, Kuwabara M, Sakaguchi T, Morisaki T, Miake J, Nishimura M, Tsuneto M, Shirayoshi Y, Ito S, Kitakaze M, Ninomiya H, Yamamoto K, Hisatome I. Esm1 and Stc1 as Angiogenic Factors Responsible for Protective Actions of Adipose-Derived Stem Cell Sheets on Chronic Heart Failure After Rat Myocardial Infarction. Circ J 2021; 85:657-666. [PMID: 33716265 DOI: 10.1253/circj.cj-20-0877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although adipose-derived stem cell (ADSC) sheets improve the cardiac function after myocardial infarction (MI), underlying mechanisms remain to be elucidated. The aim of this study was to determine the fate of transplanted ADSC sheets and candidate angiogenic factors released from ADSCs for their cardiac protective actions. METHODS AND RESULTS MI was induced by ligation of the left anterior descending coronary artery. Sheets of transgenic (Tg)-ADSCs expressing green fluorescence protein (GFP) and luciferase or wild-type (WT)-ADSCs were transplanted 1 week after MI. Both WT- and Tg-ADSC sheets improved cardiac functions evaluated by echocardiography at 3 and 5 weeks after MI. Histological examination at 5 weeks after MI demonstrated that either sheet suppressed fibrosis and increased vasculogenesis. Luciferase signals from Tg-ADSC sheets were detected at 1 and 2 weeks, but not at 4 weeks, after transplantation. RNA sequencing of PKH (yellow-orange fluorescent dye with long aliphatic tails)-labeled Tg-ADSCs identified mRNAs of 4 molecules related to angiogenesis, including those of Esm1 and Stc1 that increased under hypoxia. Administration of Esm1 or Stc1 promoted tube formation by human umbilical vein endothelial cells. CONCLUSIONS ADSC sheets improved cardiac contractile functions after MI by suppressing cardiac fibrosis and enhancing neovascularization. Transplanted ADSCs existed for >2 weeks on MI hearts and produced the angiogenic factors Esm1 and Stc1, which may improve cardiac functions after MI.
Collapse
Affiliation(s)
- Mai Watanabe
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Hiromu Horie
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | | | - Yumiko Inoue
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Tomomi Notsu
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Takayuki Wakimizu
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Maya Adachi
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Kenshiro Yamamoto
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Kumi Morikawa
- Biomaterials Research Group, Department of Life Science and Biotechnology, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Masanari Kuwabara
- Intensive Care Unit and Department of Cardiology, Toranomon Hospital
| | - Takuki Sakaguchi
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine
| | - Takayuki Morisaki
- Division of Molecular Pathology/Department of Internal Medicine IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine
| | - Motonobu Nishimura
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine
| | - Motokazu Tsuneto
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Yasuaki Shirayoshi
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center
| | | | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University Faculty of Medicine
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| |
Collapse
|
8
|
Li C, Naveed M, Dar K, Liu Z, Baig MMFA, Lv R, Saeed M, Dingding C, Feng Y, Xiaohui Z. Therapeutic advances in cardiac targeted drug delivery: from theory to practice. J Drug Target 2020; 29:235-248. [PMID: 32933319 DOI: 10.1080/1061186x.2020.1818761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most commonly used administration methods in clinics and life are oral administration, intravenous injection, and other systemic administration methods. Targeted administration must be an essential long-term development direction due to the limited availability and a high incidence of systemic side effects. Cardiovascular diseases (CVD) are the leading cause of death all over the world. Targeted drug delivery (TDD) methods with the heart as the target organ have developed rapidly and are diversified. This article reviews the research progress of various TDD methods around the world with a heart as the target organ. It is mainly divided into two parts: the targeting vector represented by nanoparticles and various TDD methods such as intracoronary injection, ventricular wall injection, pericardial injection, and implantable medical device therapy and put forward some suggestions on the development of targeting. Different TDD methods described in this paper have not been widely used in clinical practice, and some have not even completed preclinical studies. Targeted drug delivery still requires long-term efforts by many researchers to realize the true meaning of the heart. HIGHLIGHTS Targeted administration can achieve a better therapeutic effect and effectively reduce the occurrence of adverse reactions. Parenteral administration or medical device implantation can be used for targeted drug delivery. Combined with new dosage forms or new technologies, better-targeted therapy can be achieved. Clinical trials have confirmed the safety and effectiveness of several administration methods.
Collapse
Affiliation(s)
- Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,School of Pharmacy, Nanjing Medical University, Nanjing, P. R. China
| | - Kashif Dar
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China
| | - Rundong Lv
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chen Dingding
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yu Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Department of Heart Surgery, Nanjing Shuiximen Hospital, Nanjing, P. R. China.,Department of Cardiothoracic Surgery, Zhongda Hospital affiliated with Southeast University, Nanjing, P. R. China
| |
Collapse
|
9
|
Adachi M, Watanabe M, Kurata Y, Inoue Y, Notsu T, Yamamoto K, Horie H, Tanno S, Morita M, Miake J, Hamada T, Kuwabara M, Nakasone N, Ninomiya H, Tsuneto M, Shirayoshi Y, Yoshida A, Nishimura M, Yamamoto K, Hisatome I. β-Adrenergic Blocker, Carvedilol, Abolishes Ameliorating Actions of Adipose-Derived Stem Cell Sheets on Cardiac Dysfunction and Remodeling After Myocardial Infarction. Circ J 2019; 83:2282-2291. [PMID: 31527337 DOI: 10.1253/circj.cj-19-0261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Treatment of myocardial infarction (MI) includes inhibition of the sympathetic nervous system (SNS). Cell-based therapy using adipose-derived stem cells (ASCs) has emerged as a novel therapeutic approach to treat heart failure in MI. The purpose of this study was to determine whether a combination of ASC transplantation and SNS inhibition synergistically improves cardiac functions after MI. METHODS AND RESULTS ASCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ASC cells, mRNA levels of angiogenic factors under normoxia or hypoxia, and the effects of norepinephrine and a β-blocker, carvedilol, on the mRNA levels were determined. Hypoxia increased vascular endothelial growth factor (VEGF) mRNA in ASCs. Norepinephrine further increased VEGF mRNA; this effect was unaffected by carvedilol. VEGF promoted VEGF receptor phosphorylation and tube formation of human umbilical vein endothelial cells, which were inhibited by carvedilol. In in vivo studies using a rat MI model, transplanted ASC sheets improved contractile functions of MI hearts; they also facilitated neovascularization and suppressed fibrosis after MI. These beneficial effects of ASC sheets were abolished by carvedilol. The effects of ASC sheets and carvedilol on MI heart functions were confirmed by Langendorff perfusion experiments using isolated hearts. CONCLUSIONS ASC sheets prevented cardiac dysfunctions and remodeling after MI in a rat model via VEGF secretion. Inhibition of VEGF effects by carvedilol abolished their beneficial effects.
Collapse
Affiliation(s)
- Maya Adachi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Mai Watanabe
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University Faculty of Medicine
| | - Yumiko Inoue
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Tomomi Notsu
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Kenshiro Yamamoto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Hiromu Horie
- Department of Cardiovascular Surgery, Tottori University Faculty of Medicine
| | - Shogo Tanno
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Maki Morita
- Department of Plastic and Reconstructive Surgery, Tottori University Faculty of Medicine
| | - Junichiro Miake
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine
| | - Toshihiro Hamada
- Department of Community-Based Family Medicine, Tottori University Faculty of Medicine
| | | | - Naoe Nakasone
- Department of Biological Regulation, Tottori University
| | | | - Motokazu Tsuneto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Akio Yoshida
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Motonobu Nishimura
- Department of Cardiovascular Surgery, Tottori University Faculty of Medicine
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| |
Collapse
|
10
|
Yamamoto K, Kurata Y, Inoue Y, Adachi M, Tsuneto M, Miake J, Ogino K, Ninomiya H, Yoshida A, Shirayoshi Y, Suyama Y, Yagi S, Nishimura M, Yamamoto K, Hisatome I. Pretreatment with an angiotensin II receptor blocker abolished ameliorating actions of adipose-derived stem cell sheets on cardiac dysfunction and remodeling after myocardial infarction. Regen Ther 2018; 9:79-88. [PMID: 30525078 PMCID: PMC6223028 DOI: 10.1016/j.reth.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction Cell sheets using myoblasts have been developed for the treatment of heart failure after myocardial infarction (MI) bridging to heart transplantation. Stem cells are supposed to be better than myoblasts as a source of cells, since they possess a potential to proliferate and differentiate into cardiomyocytes, and also have capacity to secrete angiogenic factors. Adipose-derived stem cells (ASCs) obtained from fat tissues are expected to be a new cell source for ASC sheet therapies. Administration of angiotensin II receptor blockers (ARBs) is a standard therapy for heart failure after MI. However, it is not known whether ARBs affect the cell sheet therapy. This study aimed to examine ameliorating effects of ASC sheets on heart failure and remodeling after MI, and how pretreatment with ARBs prior to the creation of MI and ASC sheet transplantation modifies the effects of ASC sheets. Methods ASCs were isolated from fat tissues of wild-type rats, and ASC sheets were engineered on temperature-responsive dishes. In in vitro studies using cultured cells, mRNA levels of vascular endothelial growth factor (VEGF) in ASCs were determined by RT-PCR in the presence of angiotensin II and/or an ARB, irbesartan, under normoxia and hypoxia; mRNA and protein levels of angiotensin II receptor type 1a (AT1aR), type 1b (AT1bR) and type 2 (AT2R) were also determined by RT-PCR and western blotting. In in vivo studies using a rat MI model, effects of transplanted ASC sheets and/or irbesartan on cardiac functions and remodeling after MI were evaluated by echocardiography, histological analysis and molecular biological techniques. Results In the in vitro studies, ASCs expressed higher levels of VEGF mRNA under hypoxia. They also expressed mRNA and protein of AT1aR but not AT1bR or AT2R. Under normoxia, angiotensin II increased the level of VEGF mRNA in ASCs, which was abolished by irbesartan. Under hypoxia, irbesartan reduced the level of VEGF mRNA in ASCs regardless of whether angiotensin II was present or not. In the in vivo studies, ASC sheets improved cardiac functions after MI, leading to decreased interstitial fibrosis and increased capillary density in border zones. These effects of ASC sheets were abolished by oral administration of irbesartan before MI and their transplantation. Conclusions ASC sheets ameliorated cardiac dysfunctions and remodeling after MI via increasing VEGF expression, which was abolished by pretreatment with irbesartan before the creation of MI and transplantation.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ARB, angiotensin receptor blocker
- ASC, adipose-derived stem cell
- AT1(2)R, angiotensin II receptor type 1(2)
- Adipose-derived stem cell sheet
- Angiotensin II
- CRT, cardiac resynchronization therapy
- EF, ejection fraction
- FGF, fibroblast growth factor
- FS, fractional shortening
- HGF, hepatocyte growth factor
- Irbesartan
- LVEDD, left ventricular end-diastolic diameter
- LVESD, left ventricular end-systolic diameter
- MI, myocardial infarction
- MSC, mesenchymal stem cell
- Myocardial infarction
- RAS, renin–angiotensin system
- VEGF
- VEGF, vascular endothelial growth factor
- vWF, von Willebrand factor
Collapse
Affiliation(s)
- Kenshiro Yamamoto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University Faculty of Medicine, 1-1 Daigaku, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yumiko Inoue
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Maya Adachi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Motokazu Tsuneto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Junichiro Miake
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kazuhide Ogino
- Department of Cardiology, Tottori Red Cross Hospital, Tottori, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University, Yonago, Japan
| | - Akio Yoshida
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yoshiko Suyama
- Department of Plastic and Reconstructive Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shunjiro Yagi
- Department of Plastic and Reconstructive Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Motonobu Nishimura
- Department of Cardiovascular Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Japan
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
11
|
Nummi A, Nieminen T, Pätilä T, Lampinen M, Lehtinen ML, Kivistö S, Holmström M, Wilkman E, Teittinen K, Laine M, Sinisalo J, Kupari M, Kankuri E, Juvonen T, Vento A, Suojaranta R, Harjula A. Epicardial delivery of autologous atrial appendage micrografts during coronary artery bypass surgery-safety and feasibility study. Pilot Feasibility Stud 2017; 3:74. [PMID: 29276625 PMCID: PMC5738681 DOI: 10.1186/s40814-017-0217-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
Background The atrial appendages are a tissue reservoir for cardiac stem cells. During on-pump coronary artery bypass graft (CABG) surgery, part of the right atrial appendage can be excised upon insertion of the right atrial cannula of the heart-lung machine. In the operating room, the removed tissue can be easily cut into micrografts for transplantation. This trial aims to assess the safety and feasibility of epicardial transplantation of atrial appendage micrografts in patients undergoing CABG surgery. Methods/design Autologous cardiac micrografts are made from leftover right atrial appendage during CABG of 6 patients. Atrial appendage is mechanically processed to micrografts consisting of atrial appendage-derived cells (AADCs) and their extracellular matrix (ECM). The micrografts are epicardially transplanted in a fibrin gel and covered with a tissue-engineered ECM sheet. Parameters including echocardiography—reflecting cardiac insufficiency—are studied pre- and post-operatively as well as at 3 and 6 months of the follow-up. Cardiac functional magnetic resonance imaging is performed preoperatively and at 6-month follow-up. The primary outcome measures are patient safety in terms of hemodynamic and cardiac function over time and feasibility of therapy administration in a clinical setting. Secondary outcome measures are left ventricular wall thickness, change in the amount of myocardial scar tissue, changes in left ventricular ejection fraction, plasma concentrations of N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, New York Heart Association class, days in hospital, and changes in the quality of life. Twenty patients undergoing routine CAGB surgery will be recruited to serve as a control group. Discussion This study aims to address the surgical feasibility and patient safety of epicardially delivered atrial appendage micrografts during CABG surgery. Delivery of autologous micrografts and AADCs has potential applications for cell and cell-based gene therapies. Trial registration ClinicalTrials.gov Identifier: NCT02672163. Date of registration: 02.02.2016
Collapse
Affiliation(s)
- Annu Nummi
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Nieminen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Internal Medicine, South Karelia Central Hospital, Lappeenranta, Finland
| | - Tommi Pätilä
- Pediatric Cardiac Surgery, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Milla Lampinen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miia L Lehtinen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sari Kivistö
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Miia Holmström
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Erika Wilkman
- Department of Anesthesiology and Intensive Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Teittinen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Laine
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Kupari
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tatu Juvonen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raili Suojaranta
- Department of Anesthesiology and Intensive Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ari Harjula
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | |
Collapse
|
12
|
Trindade F, Leite-Moreira A, Ferreira-Martins J, Ferreira R, Falcão-Pires I, Vitorino R. Towards the standardization of stem cell therapy studies for ischemic heart diseases: Bridging the gap between animal models and the clinical setting. Int J Cardiol 2016; 228:465-480. [PMID: 27870978 DOI: 10.1016/j.ijcard.2016.11.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Today there is an increasing demand for heart transplantations for patients diagnosed with heart failure. Though, shortage of donors as well as the large number of ineligible patients hurdle such treatment option. This, in addition to the considerable number of transplant rejections, has driven the clinical research towards the field of regenerative medicine. Nonetheless, to date, several stem cell therapies tested in animal models fall by the wayside and when they meet the criteria to clinical trials, subjects often exhibit modest improvements. A main issue slowing down the admission of such therapies in the domain of human trials is the lack of protocol standardization between research groups, which hampers comparison between different approaches as well as the lack of thought regarding the clinical translation. In this sense, given the large amount of reports on stem cell therapy studies in animal models reported in the last 3years, we sought to evaluate their advantages and limitations towards the clinical setting and provide some suggestions for the forthcoming investigations. We expect, with this review, to start a new paradigm on regenerative medicine, by evoking the debate on how to plan novel stem cell therapy studies with animal models in order to achieve more consistent scientific production and accelerate the admission of stem cell therapies in the clinical setting.
Collapse
Affiliation(s)
- Fábio Trindade
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | - Rita Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | - Rui Vitorino
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| |
Collapse
|
13
|
Kim JH, Joo HJ, Kim M, Choi SC, Lee JI, Hong SJ, Lim DS. Transplantation of Adipose-Derived Stem Cell Sheet Attenuates Adverse Cardiac Remodeling in Acute Myocardial Infarction. Tissue Eng Part A 2016; 23:1-11. [PMID: 27676105 DOI: 10.1089/ten.tea.2016.0023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adipose-derived stem cell (ADSC) transplantation has been proposed to improve cardiac function and acute myocardial infarction (AMI). Recently, cell sheet technology has been investigated for its potential applicability in cardiac injury. However, a detailed comparison of the functional recovery in the injured myocardium between cell sheets and conventional cell injection has not been adequately examined. ADSCs were isolated from the inguinal fat tissue of ICR mice. Three groups of AMI induction only (sham), intramyocardial injection of ADSCs (imADSC), and ADSC sheet transplantation (shADSC) were compared by using rat AMI models. Engraftment of ADSCs was better sustained through 28 days in the shADSC group compared with the imADSC group. Ejection fraction was improved in both imADSC and shADSC groups compared with the sham group. Ventricular wall thickness in the infarct zone was higher in the shADSC group compared with both imADSC and sham groups. Growth factor and cytokine expression in the implanted heart tissue were higher in the shADSC group compared with both imADSC and sham groups. Furthermore, only the shADSC group showed donor-derived vessels at the peri-infarct zone. Taken together, these results indicate that, although shADSC resulted in a similar improvement in left ventricular systolic function, it significantly promoted cellular engraftment and upregulated growth factor and cytokine expression, and, ultimately, attenuated adverse cardiac remodeling in rat AMI models compared with imADSC.
Collapse
Affiliation(s)
- Jong-Ho Kim
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Hyung Joon Joo
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Mina Kim
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Seung-Cheol Choi
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Jeong Ik Lee
- 2 Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine and Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology (IBST), Konkuk University , Seoul, South Korea
| | - Soon Jun Hong
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| | - Do-Sun Lim
- 1 Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University , Seoul, South Korea
| |
Collapse
|