1
|
Liu J, Pan R. Multi-omics association study integrating GWAS and pQTL data revealed MIP-1α as a potential drug target for erectile dysfunction. Front Pharmacol 2024; 15:1495970. [PMID: 39555095 PMCID: PMC11565697 DOI: 10.3389/fphar.2024.1495970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Erectile dysfunction (ED) brings heavy burden to patients and society. Despite the availability of established therapies, existing medications have restricted efficacy. Therefore, we utilized a two-sample Mendelian randomization (MR) approach to find the drug targets that might enhance the clinical outcome of ED. Methods Genetic instruments associated with circulating inflammatory proteins were obtained from a genome-wide association study (GWAS) involving 8,293 European participants. Summary statistics for ED were extracted from a meta-analysis of the United Kingdom Biobank cohort compromised of 6,175 cases and 217,630 controls with European descent. We utilized multi-omics method and MR study to explore potential drug targets by integrating GWAS and protein quantity trait loci (pQTL) data. Inverse-variance weighted (IVW) method was applied as the primary approach. Cochran's Q statistics was employed to investigate the presence of heterogeneity. Furthermore, we identify the potential therapeutic drug targets for the treatment of ED utilizing molecular docking technology. Results This MR analysis of integrating GWAS and pQTL data showed that macrophage inflammatory protein-1 alpha (MIP-1α) was causally associated with the risk of ED (OR:1.19, 95%CI:1.02-1.39, p = 0.023). Meanwhile, the results of the weighted median model were consistent with the IVW estimates (OR:1.26, 95%CI:1.04-1.52, p = 0.018). Sensitivity analysis revealed no horizontal pleiotropy and heterogeneity. Furthermore, four anti-inflammatory or tonifying small molecular compounds, encompassing echinacea, pinoresinol diglucoside, hypericin, and icariin were identified through molecular docking technology. Conclusion This study identified MIP-1α as an underlying druggable gene and promising novel therapeutic target for ED, necessitating further investigation to detect the potential mechanisms by which MIP-1α might impact the development of ED.
Collapse
Affiliation(s)
- Jingwen Liu
- Longyou People’s Hospital Affiliated with Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Quzhou, Zhejiang, China
| | - Renbing Pan
- Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
2
|
Yang W, Fang J, Zhai J, Qiu C, Liang Z, Liu Q, Wei H. IL-17A exacerbates corpus cavernosum fibrosis and neurogenic erectile dysfunction by inducing CSMC senescence via the mTORC2-ACACA pathway. BMC Med 2024; 22:376. [PMID: 39256772 PMCID: PMC11389314 DOI: 10.1186/s12916-024-03609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Neurogenic erectile dysfunction, characterized by neurological repair disorders and progressive corpus cavernosum fibrosis (CCF), is an unbearable disease with limited treatment success. IL-17A exhibits a complex role in tissue remodelling. Nevertheless, the precise role and underlying mechanisms of IL-17A in CCF under denervation remain unclear. METHODS PCR array was employed to identified differentially expressed genes between neurogenic ED and normal rats. IL-17A expression and its main target cells were analyzed using Western blotting, immunofluorescence and immunohistochemistry. The phenotypic regulation of IL-17A on corpus cavernosum smooth muscle cells (CSMCs) was evaluated by cell cycle experiments and SA-β-Gal staining. The mechanism of IL-17A was elucidated using non-target metabolomics and siRNA technique. Finally, IL-17A antagonist and ABT-263 (an inhibitor of B-cell lymphoma 2/w/xL) were utilized to enhance the therapeutic effect in a rat model of neurogenic ED. RESULTS IL-17A emerged as the most significantly upregulated gene in the corpus cavernosum of model rats. It augmented the senescence transformation and fibrotic response of CSMCs, and exhibited a strong correlation with CCF. Mechanistically, IL-17A facilitated CCF by activating the mTORC2-ACACA signalling pathway, upregulating of CSMCs lipid synthesis and senescence transition, and increasing the secretion of fibro-matrix proteins. In vivo, the blockade of IL-17A-senescence signalling improved erectile function and alleviated CCF in neurogenic ED. CONCLUSIONS IL-17A assumes a pivotal role in denervated CCF by activating the mTORC2-ACACA signalling pathway, presenting itself as a potential therapeutic target for effectively overcoming CCF and erection rehabilitation in neurogenic ED.
Collapse
Affiliation(s)
- Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiancheng Zhai
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Baoshan North Road 71, Guiyang, 550001, China
| | - Chen Qiu
- Department of Ultrasound, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zhenkang Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Qianhui Liu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Liu C, Lei Q, Li J, Liu W. Arthritis increases the risk of erectile dysfunction: Results from the NHANES 2001-2004. Front Endocrinol (Lausanne) 2024; 15:1390691. [PMID: 39022340 PMCID: PMC11251981 DOI: 10.3389/fendo.2024.1390691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Objective This study assessed the association between erectile dysfunction (ED) and arthritis. Methods Weighted logistic regression and subgroup analyses were used to investigate the association between arthritis incidence and ED among participants in the 2001-2004 National Health and Nutrition Examination Survey database. Results Among the participants, 27.8% and 18.5% had a self-reported history of ED and arthritis, respectively. ED was associated with arthritis (odds ratio [OR]=4.00; 95% confidence interval [CI]: 3.20-4.99; p<0.001], which remained significant after adjustment (OR=1.42, 95% CI: 1.00-1.96; p<0.001). Stratified by type of arthritis, after full adjustment, osteoarthritis remained significant (OR=1.11; 95% CI: 1.03-1.20; p=0.017), and rheumatoid arthritis (OR=1.03, 95% CI: 0.93-1.13; p= 0.5) and other arthritis (OR=1.04, 95% CI: 0.98-1.11; p=0.2) were not significantly correlated with ED. Multiple inference analyses confirmed the robustness of the results. Conclusion Our study showed that arthritis was strongly associated with ED. There is an urgent need to raise awareness and conduct additional research on the reasons behind this association in order to implement more scientific and rational treatment programs for patients with ED and arthritis.
Collapse
Affiliation(s)
- Changjin Liu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiming Lei
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianwei Li
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weihui Liu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
Kaya-Sezginer E, Gur S. The Inflammation Network in the Pathogenesis of Erectile Dysfunction: Attractive Potential Therapeutic Targets. Curr Pharm Des 2021; 26:3955-3972. [PMID: 32329680 DOI: 10.2174/1381612826666200424161018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Erectile dysfunction (ED) is an evolving health problem in the aging male population. Chronic low-grade inflammation is a critical component of ED pathogenesis and a probable intermediate stage of endothelial dysfunction, especially in metabolic diseases, with the inclusion of obesity, metabolic syndrome, and diabetes. OBJECTIVE This review will present an overview of preclinical and clinical data regarding common inflammatory mechanisms involved in the pathogenesis of ED associated with metabolic diseases and the effect of antiinflammatory drugs on ED. METHODS A literature search of existing pre-clinical and clinical studies was performed on databases [Pubmed (MEDLINE), Scopus, and Embase] from January 2000 to October 2019. RESULTS Low-grade inflammation is a possible pathological role in endothelial dysfunction as a consequence of ED and other related metabolic diseases. Increased inflammation and endothelial/prothrombotic markers can be associated with the presence and degree of ED. Pharmacological therapy and modification of lifestyle and risk factors may have a significant role in the recovery of erectile response through reduction of inflammatory marker levels. CONCLUSION Inflammation is the least common denominator in the pathology of ED and metabolic disorders. The inflammatory process of ED includes a shift in the complex interactions of cytokines, chemokines, and adhesion molecules. These data have established that anti-inflammatory agents could be used as a therapeutic opportunity in the prevention and treatment of ED. Further research on inflammation-related mechanisms underlying ED and the effect of therapeutic strategies aimed at reducing inflammation is required for a better understanding of the pathogenesis and successful management of ED.
Collapse
Affiliation(s)
- Ecem Kaya-Sezginer
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Serap Gur
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
von Kobbe C. Targeting senescent cells: approaches, opportunities, challenges. Aging (Albany NY) 2019; 11:12844-12861. [PMID: 31789602 PMCID: PMC6949083 DOI: 10.18632/aging.102557] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a hallmark of aging, whose onset is linked to a series of both cell and non-cell autonomous processes, leading to several consequences for the organism. To date, several senescence routes have been identified, which play a fundamental role in development, tumor suppression and aging, among other processes. The positive and/or negative effects of senescent cells are directly related to the time that they remain in the organism. Short-term (acute) senescent cells are associated with positive effects; once they have executed their actions, immune cells are recruited to remove them. In contrast, long-term (chronic) senescent cells are associated with disease; they secrete pro-inflammatory and pro-tumorigenic factors in a state known as senescence-associated secretory phenotype (SASP). In recent years, cellular senescence has become the center of attention for the treatment of aging-related diseases. Current therapies are focused on elimination of senescent cell functions in three main ways: i) use of senolytics; ii) inhibition of SASP; and iii) improvement of immune system functions against senescent cells (immunosurveillance). In addition, some anti-cancer therapies are based on the induction of senescence in tumor cells. However, these senescent-like cancer cells must be subsequently cleared to avoid a chronic pro-tumorigenic state. Here is a summary of different scenarios, depending on the therapy used, with a discussion of the pros and cons of each scenario.
Collapse
Affiliation(s)
- Cayetano von Kobbe
- Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
6
|
Facio FN, Facio MF, Spessoto LF, Pessutti D, Reis LO, Campos SG, Taboga S. Anti-inflammatory and anti-fibrotic effects of annexin1 on erectile function after cavernous nerve injury in rats. Int J Impot Res 2016; 28:221-227. [PMID: 27557611 DOI: 10.1038/ijir.2016.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 05/14/2016] [Accepted: 07/23/2016] [Indexed: 01/22/2023]
Abstract
The aim of this study was to investigate the effect of the anti-inflammatory and anti-fibrotic actions of ANX1 on erectile function (EF). Forty-eight male Wistar rats were randomly distributed into four equal groups: one group (sham operation-control) and three groups (bilateral cavernous nerve (CN) crush injury). Crush injury groups were treated prior to injury with an intravascular injection of either ANX1 (50 or 100 μg kg-1) or vehicle. EF was assessed by CN electrical stimulation at 2 and 7 days after CN injury with histomorphometric and immunohistochemical analysis. ANX1 demonstrated functional preservation as the increase in intracavernous pressure (ICP). A dose-response relationship regarding the effect on penile tissue was confirmed, and preservation of the penile dorsal nerves and anti-apoptotic effects in the corpus cavernosum (real P-value vs injured control). ANX1 treatment prevented collagen deposition and smooth muscle loss in the penis. ANX1 normalized the expression of vascular endothelial growth factor and decreased tumor necrosis factor-α in the lumen of the blood vessels of the organ. ANX1 proved effective in preserving EF in a rat model of neurogenic erectile dysfunction. ANX1 treatment before CN injury in rats improved erectile recovery, enhanced vascular regeneration and preserved the micro-architecture of the corpus cavernosum. The clinical availability of this compound merits application in penile rehabilitation studies following radical prostatectomy.
Collapse
Affiliation(s)
- F N Facio
- Division of Urology, Medical School of São José do Rio Preto (FAMERP), Sao Paulo, Brazil
| | - M F Facio
- Department of Medicine, Undergraduate Student, Ceres School of Medicine, Faceres, Brazil
| | - L F Spessoto
- Division of Urology, Medical School of São José do Rio Preto (FAMERP), Sao Paulo, Brazil
| | - D Pessutti
- Division of Urology, Medical School of São José do Rio Preto (FAMERP), Sao Paulo, Brazil
| | - L O Reis
- Department of Urology, Faculty of Medicine, Division of Urology, Center for Life Sciences, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, Brazil
| | - S G Campos
- Department of Biology, São Paulo State University, UNESP/IBILCE, São José Rio Preto, Brazil
| | - S Taboga
- Department of Biology, São Paulo State University, UNESP/IBILCE, São José Rio Preto, Brazil
| |
Collapse
|
7
|
Matjusaitis M, Chin G, Sarnoski EA, Stolzing A. Biomarkers to identify and isolate senescent cells. Ageing Res Rev 2016; 29:1-12. [PMID: 27212009 DOI: 10.1016/j.arr.2016.05.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
Aging is the main risk factor for many degenerative diseases and declining health. Senescent cells are part of the underlying mechanism for time-dependent tissue dysfunction. These cells can negatively affect neighbouring cells through an altered secretory phenotype: the senescence-associated secretory phenotype (SASP). The SASP induces senescence in healthy cells, promotes tumour formation and progression, and contributes to other age-related diseases such as atherosclerosis, immune-senescence and neurodegeneration. Removal of senescent cells was recently demonstrated to delay age-related degeneration and extend lifespan. To better understand cell aging and to reap the benefits of senescent cell removal, it is necessary to have a reliable biomarker to identify these cells. Following an introduction to cellular senescence, we discuss several classes of biomarkers in the context of their utility in identifying and/or removing senescent cells from tissues. Although senescence can be induced by a variety of stimuli, senescent cells share some characteristics that enable their identification both in vitro and in vivo. Nevertheless, it may prove difficult to identify a single biomarker capable of distinguishing senescence in all cell types. Therefore, this will not be a comprehensive review of all senescence biomarkers but rather an outlook on technologies and markers that are most suitable to identify and isolate senescent cells.
Collapse
Affiliation(s)
- Mantas Matjusaitis
- Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, England, UK
| | - Greg Chin
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ethan Anders Sarnoski
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Alexandra Stolzing
- Institute IZBI, University of Leipzig, Leipzig, Germany; Loughborough University, Loughborough, England, UK.
| |
Collapse
|