1
|
Kamba K, Wan L, Unzai S, Morishita R, Takaori-Kondo A, Nagata T, Katahira M. Direct inhibition of human APOBEC3 deaminases by HIV-1 Vif independent of the proteolysis pathway. Biophys J 2024; 123:294-306. [PMID: 38115583 PMCID: PMC10870137 DOI: 10.1016/j.bpj.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
HIV-1 Vif is known to counteract the antiviral activity of human apolipoprotein B mRNA-editing catalytic polypeptide-like (A3), a cytidine deaminase, in various ways. However, the precise mechanism behind this interaction has remained elusive. Within infected cells, Vif forms a complex called VβBCC, comprising CBFβ and the components of E3 ubiquitin ligase, Elongin B, Elongin C, and Cullin5. Together with the ubiquitin-conjugating enzyme, VβBCC induces ubiquitination-mediated proteasomal degradation of A3. However, Vif exhibits additional counteractive effects. In this study, we elucidate that VβBCC inhibits deamination by A3G, A3F, and A3B independently of proteasomal degradation. Surprisingly, we discovered that this inhibition for A3G is directly attributed to the interaction between VβBCC and the C-terminal domain of A3G. Previously, it was believed that Vif did not interact with the C-terminal domain. Our findings suggest that inhibiting the interaction between VβBCC and the C-terminal domain, as well as the N-terminal domain known to be targeted for ubiquitination, of A3G may be needed to prevent counteraction by Vif.
Collapse
Affiliation(s)
- Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Li Wan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Uji, Kyoto, Japan
| | - Satoru Unzai
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama, Ehime, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Uji, Kyoto, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Uji, Kyoto, Japan.
| |
Collapse
|
2
|
Liu Y, Lan W, Wang C, Cao C. Two different kinds of interaction modes of deaminase APOBEC3A with single-stranded DNA in solution detected by nuclear magnetic resonance. Protein Sci 2022; 31:443-453. [PMID: 34792260 PMCID: PMC8819843 DOI: 10.1002/pro.4242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
APOBEC3A (A3A) deaminates deoxycytidine in target motif TC in a single-stranded DNA (we termed it as TC DNA), which mortally mutates viral pathogens and immunoglobulins, and leads to the diversification and lethality of cancers. The crystal structure of A3A-DNA revealed a unique U-shaped recognition mode of target base dC0 . However, when TC DNA was titrated into 15 N-labeled A3A solution, we observed two sets of 1 H-15 N cross-peaks of A3A in HSQC spectra, and two sets of 1 H-1 H cross-peaks of DNA in two-dimensional 13 C,15 N-filtered TOCSY spectra, indicating two different kinds of conformers of either A3A or TC DNA existing in solution. Here, mainly by NMR, we demonstrated that one DNA conformer interacted with one A3A conformer, forming a specific complex A3AS -DNAS in a way almost similar to that observed in the reported crystal A3A-DNA structure, where dC0 inserted into zinc ion binding center. While the other DNA conformer bound with another A3A conformer, but dC0 did not extend into the zinc-binding pocket, forming a nonspecific A3ANS -DNANS complex. The NMR solution structure implied three sites Asn61 , His182 and Arg189 were necessary to DNA recognition. These observations indicate a distinctive way from that reported in X-ray crystal structure, suggesting an unexpected mode of deaminase APOBEC3A to identify target motif TC in DNA in solution.
Collapse
Affiliation(s)
- Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| |
Collapse
|
3
|
Ren F, Li W, Zhao S, Wang L, Wang Q, Li M, Xiang A, Guo Y. A3G-induced mutations show a low prevalence and exhibit plus-strand regional distribution in hepatitis B virus DNA from patients with non-hepatocellular carcinoma (HCC) and HCC. J Med Virol 2021; 93:3672-3678. [PMID: 32779759 DOI: 10.1002/jmv.26418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022]
Abstract
APOBEC3G (A3G) cytidine deaminase is an innate immune restriction factor that can edit and inhibit hepatitis B virus (HBV) replication. The preferred target of A3G is deamination of the third cytosine of 5'CCC to form a mutant marker 5'CC C → K. However, the distribution of A3G-induced mutations on HBV DNA during infection is not well characterized. To provide clarity, we obtained the HBV DNA sequences from HBV infected individuals with and without hepatocellular carcinoma (HCC and non-HCC, respectively), from the NCBI database, and calculated the r values of A3G-induced 5'CC C → K mutation prevalence in HBV DNA. A3G-induced mutations were weakly prevalent and mainly distributed in the plus strand of HBV DNA (r = 1.407). The mutations on the minus strand were weaker (r = .8189). There were A3G-induced mutation regions in the 1200 to 2000 nt region of the plus strand and the 1600 to 1500 nt region of the minus strand. There was no significant difference in the r values of A3G-induced mutations in HBV DNA between the HCC and non-HCC groups. However, the rvalue of the plus strand 2400 to 2800 nt regions of HCC derived HBV DNA (r = 4.2) was significantly higher than that of the same regions of non-HCC derived HBV DNA (r = 1.21). These findings clarify the weak prevalence and preferred plus-strand distribution of A3G-induced mutations on HBV DNA from HCC and non-HCC. These findings may provide valuable clues regarding the interaction mechanism between A3G and HBV DNA and inform HCC screening.
Collapse
Affiliation(s)
- FengLing Ren
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - WeiNa Li
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - ShuDong Zhao
- YinChuan Women and Children Healthcare Hospital, Yinchuan, Ningxia, China
| | - Li Wang
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qin Wang
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Meng Li
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - An Xiang
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - YanHai Guo
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Kvach MV, Barzak FM, Harjes S, Schares HAM, Kurup HM, Jones KF, Sutton L, Donahue J, D'Aquila RT, Jameson GB, Harki DA, Krause KL, Harjes E, Filichev VV. Differential Inhibition of APOBEC3 DNA-Mutator Isozymes by Fluoro- and Non-Fluoro-Substituted 2'-Deoxyzebularine Embedded in Single-Stranded DNA. Chembiochem 2019; 21:1028-1035. [PMID: 31633265 PMCID: PMC7142307 DOI: 10.1002/cbic.201900505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2019] [Indexed: 12/17/2022]
Abstract
The APOBEC3 (APOBEC3A‐H) enzyme family is part of the human innate immune system that restricts pathogens by scrambling pathogenic single‐stranded (ss) DNA by deamination of cytosines to produce uracil residues. However, APOBEC3‐mediated mutagenesis of viral and cancer DNA promotes its evolution, thus enabling disease progression and the development of drug resistance. Therefore, APOBEC3 inhibition offers a new strategy to complement existing antiviral and anticancer therapies by making such therapies effective for longer periods of time, thereby preventing the emergence of drug resistance. Here, we have synthesised 2′‐deoxynucleoside forms of several known inhibitors of cytidine deaminase (CDA), incorporated them into oligodeoxynucleotides (oligos) in place of 2′‐deoxycytidine in the preferred substrates of APOBEC3A, APOBEC3B, and APOBEC3G, and evaluated their inhibitory potential against these enzymes. An oligo containing a 5‐fluoro‐2′‐deoxyzebularine (5FdZ) motif exhibited an inhibition constant against APOBEC3B 3.5 times better than that of the comparable 2′‐deoxyzebularine‐containing (dZ‐containing) oligo. A similar inhibition trend was observed for wild‐type APOBEC3A. In contrast, use of the 5FdZ motif in an oligo designed for APOBEC3G inhibition resulted in an inhibitor that was less potent than the dZ‐containing oligo both in the case of APOBEC3GCTD and in that of full‐length wild‐type APOBEC3G.
Collapse
Affiliation(s)
- Maksim V Kvach
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Fareeda M Barzak
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Stefan Harjes
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Henry A M Schares
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Harikrishnan M Kurup
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Katherine F Jones
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN, 55455, USA
| | - Lorraine Sutton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, 21st Ave S, Nashville, TN, 37232, USA
| | - John Donahue
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, 21st Ave S, Nashville, TN, 37232, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases and, Northwestern HIV Translational Research Center, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2330, Chicago, IL, 60611, USA
| | - Geoffrey B Jameson
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN, 55455, USA
| | - Kurt L Krause
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Biochemistry, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
| | - Elena Harjes
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
5
|
Yan X, Lan W, Wang C, Cao C. Structural Investigations on the Interactions between Cytidine Deaminase Human APOBEC3G and DNA. Chem Asian J 2019; 14:2235-2241. [PMID: 31116511 DOI: 10.1002/asia.201900480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Indexed: 02/05/2023]
Abstract
Human APOBEC3G (A3G) inhibits the replication of human immunodeficiency virus-1 by deaminating cytidine at the 3'-end in the target motif 5'-CCC-3' in viral cDNA during reverse transcription. It in vitro deaminates two consecutive cytidines in a 3'->5' order. Although a crystal structure of the A3G catalytic domain (A3G-CD2) with DNA was reported, it is unknown why residues involved in enzymatic reaction are distributed widely. Here, we introduced an iodine atom into the C-5 position of cytidine (dC6 I ) in DNA 5'-ATTC4 C5 C6 I A7 ATT-3' (TCCC6 I ). It switches the deamination sequence preference from CCC to TCC, although small dC6 I deamination was observed. Solution structures of A3G-CD2 in complexes with products DNA TCUC6 I and TCUU6 I indicate that the substrate DNA binds A3G-CD2 in TCC and CCC modes. The dC6 deamination correlates with the 4th base type. The CCC mode favours dC6 deamination, while the TCC mode results in dC5 deamination. These studies present an extensive basis to design inhibitors to impede viral evolvability.
Collapse
Affiliation(s)
- Xiaoxuan Yan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
6
|
Wan L, Kamba K, Nagata T, Katahira M. An insight into the dependence of the deamination rate of human APOBEC3F on the length of single-stranded DNA, which is affected by the concentrations of APOBEC3F and single-stranded DNA. Biochim Biophys Acta Gen Subj 2019; 1864:129346. [PMID: 30986508 DOI: 10.1016/j.bbagen.2019.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND APOBEC3F (A3F), a member of the human APOBEC3 (A3) family of cytidine deaminases, acts as an anti-HIV-1 factor by deaminating deoxycytidine in the complementary DNA of the viral genome. A full understanding of the deamination behavior of A3F awaits further investigation. METHODS The real-time NMR method and uracil-DNA glycosylase assay were used to track the activities of the C-terminal domain (CTD) of A3F at different concentrations of A3F-CTD and ssDNA. The steady-state fluorescence anisotropy measurement was used to examine the binding between A3F-CTD and ssDNA with different lengths. The use of the A3F-CTD N214H mutant, having higher activity than the wild-type, facilitated the tracking of the reactions. RESULTS A3F-CTD was found to efficiently deaminate the target deoxycytidine in long ssDNA in lower ssDNA concentration conditions ([A3F-CTD] ≫ [ssDNA]), while the target deoxycytidine in short ssDNA is deaminated efficiently in higher ssDNA concentration conditions ([A3F-CTD] ≪ [ssDNA]). This property is quite different from that of the previously studied A3 family member, A3B; the concentrations of the proteins and ssDNA had no effect. CONCLUSIONS The concentrations of A3F-CTD and ssDNA substrates affect the ssDNA-length-dependence of deamination rate of the A3F-CTD. This unique property of A3F is rationally interpreted on the basis of its binding characteristics with ssDNA. GENERAL SIGNIFICANCE The discovery of the unique property of A3F regarding the deamination rate deepens the understanding of its counteraction against HIV-1. Our strategy is applicable to investigate the other aspects of the A3 activities, such as those involved in the cancer development.
Collapse
Affiliation(s)
- Li Wan
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| |
Collapse
|
7
|
Tomkova M, Schuster-Böckler B. DNA Modifications: Naturally More Error Prone? Trends Genet 2018; 34:627-638. [PMID: 29853204 DOI: 10.1016/j.tig.2018.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Epigenetic DNA modifications are essential for normal cell function in vertebrates, but they can also be hotspots of mutagenesis. Methylcytosine in particular has long been known to be less stable than other nucleotides and spontaneously deaminates to thymine. Beyond this well-established phenomenon, however, the influence of epigenetic marks on mutagenesis has recently become an active field of investigation. In this review, we summarize current knowledge of the interactions between different DNA modifications and other mutagenic processes. External mutagens, such as UV light or smoking carcinogens, affect modified cytosines differently from unmodified ones, and modified cytosine can in some cases be protective rather than mutagenic. Notably, cell-intrinsic processes, such as DNA replication, also appear to influence the mutagenesis of modified cytosines. Altogether, evidence is accumulating to show that epigenetic changes have a profound influence on tissue-specific mutation accumulation.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Benjamin Schuster-Böckler
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
8
|
Wan L, Nagata T, Katahira M. Influence of the DNA sequence/length and pH on deaminase activity, as well as the roles of the amino acid residues around the catalytic center of APOBEC3F. Phys Chem Chem Phys 2018; 20:3109-3117. [DOI: 10.1039/c7cp04477a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The roles of the amino acid residues responsible for the deaminase activity of APOBEC3F were identified by mutation analysis.
Collapse
Affiliation(s)
- Li Wan
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| | - Takashi Nagata
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| | - Masato Katahira
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| |
Collapse
|
9
|
Kamba K, Nagata T, Katahira M. The C-terminal cytidine deaminase domain of APOBEC3G itself undergoes intersegmental transfer for a target search, as revealed by real-time NMR monitoring. Phys Chem Chem Phys 2018; 20:2976-2981. [DOI: 10.1039/c7cp05171a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deamination activity of A3G-CTD was first increased, but then decreased, which indicated that A3G undergoes the intersegmental transfer.
Collapse
Affiliation(s)
- Keisuke Kamba
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
| | - Takashi Nagata
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| | - Masato Katahira
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| |
Collapse
|
10
|
Wan L, Nagata T, Morishita R, Takaori-Kondo A, Katahira M. Observation by Real-Time NMR and Interpretation of Length- and Location-Dependent Deamination Activity of APOBEC3B. ACS Chem Biol 2017; 12:2704-2708. [PMID: 28952713 DOI: 10.1021/acschembio.7b00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human APOBEC3B (A3B) deaminates a cytosine into a uracil in single-stranded (ss) DNA, resulting in human cancers. A3B's deamination activity is conferred by its C-terminal domain (CTD). However, little is known about the mechanism by which target sequences are searched and deaminated. Here, we applied a real-time NMR method to elucidate the deamination properties. We found that A3B CTD shows higher activity toward its target sequence in short ssDNA and efficiently deaminates a target sequence located near the center of ssDNA. These properties are quite different from those of well-studied APOBEC3G, which shows higher activity toward its target sequence in long ssDNA and one located close to the 5'-end. The unique properties of the A3B CTD can be rationally interpreted by considering that after nonspecific binding to ssDNA, A3B slides only for a relatively short distance and tends to dissociate from the ssDNA before reaching the target sequence.
Collapse
Affiliation(s)
- Li Wan
- Institute
of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan
| | - Takashi Nagata
- Institute
of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., 790-8577, Matsuyama, Ehime, Japan
| | - Akifumi Takaori-Kondo
- Department
of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Masato Katahira
- Institute
of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan
| |
Collapse
|
11
|
Kamba K, Nagata T, Katahira M. Characterization of the Deamination Coupled with Sliding along DNA of Anti-HIV Factor APOBEC3G on the Basis of the pH-Dependence of Deamination Revealed by Real-Time NMR Monitoring. Front Microbiol 2016; 7:587. [PMID: 27199921 PMCID: PMC4848395 DOI: 10.3389/fmicb.2016.00587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/11/2016] [Indexed: 11/29/2022] Open
Abstract
Human APOBEC3G (A3G) is an antiviral factor that inactivates HIV. The C-terminal domain of A3G (A3G-CTD) deaminates cytosines into uracils within single-stranded DNA (ssDNA), which is reverse-transcribed from the viral RNA genome. The deaminase activity of A3G is highly sequence-specific; the third position (underlined) of a triplet cytosine (CCC) hotspot is converted into CCU. A3G deaminates a CCC that is located close to the 5′ end of ssDNA more effectively than ones that are less close to the 5′ end, so-called 3′ → 5′ polarity. We had developed an NMR method that can be used to analyze the deamination reaction in real-time. Using this method, we previously showed that 3′ → 5′ polarity can be explained rationally by A3G-CTD's nonspecific ssDNA-binding and sliding direction-dependent deamination activities. We then demonstrated that the phosphate backbone is important for A3G-CTD to slide on the ssDNA and to exert the 3′ → 5′ polarity, probably due to an electrostatic intermolecular interaction. In this study, we investigate the pH effects on the structure, deaminase activity, and 3′ → 5′ polarity of A3G-CTD. Firstly, A3G-CTD was shown to retain the native structure in the pH range of 4.0–10.5 by CD spectroscopy. Next, deamination assaying involving real-time NMR spectroscopy for 10-mer ssDNA containing a single CCC revealed that A3G-CTD's deaminase activity decreases as the pH increases in the range of pH 6.5–12.7. This is explained by destabilization of the complex between A3G-CTD and ssDNA due to the weakened electrostatic interaction with the increase in pH. Finally, deamination assaying for 38-mer ssDNA having two CCC hotspots connected by a long poly-adenine linker showed that A3G-CTD retains the same pH deaminase activity preference toward each CCC as that toward the CCC of the 10-mer DNA. Importantly, the 3′ → 5′ polarity turned out to increase as the pH decreases in the range of 6.5–8.0. This suggests that A3G-CTD tends to continue sliding without abortion at lower pH, while A3G-CTD tends to dissociate from ssDNA during sliding at higher pH due to the weakened electrostatic interaction.
Collapse
Affiliation(s)
- Keisuke Kamba
- Institute of Advanced Energy, Kyoto UniversityKyoto, Japan; Graduate School of Energy Science, Kyoto UniversityKyoto, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto UniversityKyoto, Japan; Graduate School of Energy Science, Kyoto UniversityKyoto, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto UniversityKyoto, Japan; Graduate School of Energy Science, Kyoto UniversityKyoto, Japan
| |
Collapse
|