1
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Basilicata M, Pieri M, Marrone G, Nicolai E, Di Lauro M, Paolino V, Tomassetti F, Vivarini I, Bollero P, Bernardini S, Noce A. Saliva as Biomarker for Oral and Chronic Degenerative Non-Communicable Diseases. Metabolites 2023; 13:889. [PMID: 37623833 PMCID: PMC10456419 DOI: 10.3390/metabo13080889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Saliva is a very complex fluid and it is essential to maintain several physiological processes and functions, including oral health, taste, digestion and immunological defenses. Saliva composition and the oral microbiome can be influenced by several factors, like diet and smoking habits, and their alteration can represent an important access point for pathogens and, thus, for systemic illness onset. In this review, we explore the potentiality of saliva as a new tool for the early detection of some pathological conditions, such as oral diseases, chronic degenerative non-communicable diseases, among these chronic kidney disease (CKD). We also examined the possible correlation between oral and systemic diseases and oral and gut microbiota dysbiosis. In particular, we deeply analyzed the relationship between oral diseases and CKD. In this context, some salivary parameters can represent a new device to detect either oral or systemic pathologies. Moreover, the positive modulation of oral and gut microbiota induced by prebiotics, postbiotics, or symbiotics could represent a new possible adjuvant therapy in the clinical management of oral diseases and CKD.
Collapse
Affiliation(s)
- Michele Basilicata
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Vivarini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
3
|
Rabe A, Gesell Salazar M, Michalik S, Kocher T, Below H, Völker U, Welk A. Impact of different oral treatments on the composition of the supragingival plaque microbiome. J Oral Microbiol 2022; 14:2138251. [PMID: 36338832 PMCID: PMC9629129 DOI: 10.1080/20002297.2022.2138251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Dental plaque consists of a diverse microbial community embedded in a complex structure of exopolysaccharides. Dental biofilms form a natural barrier against pathogens but lead to oral diseases in a dysbiotic state. Objective Using a metaproteome approach combined with a standard plaque-regrowth study, this pilot study examined the impact of different concentrations of lactoperoxidase (LPO) on early plaque formation, and active biological processes. Design Sixteen orally healthy subjects received four local treatments as a randomized single-blind study based on a cross-over design. Two lozenges containing components of the LPO-system in different concentrations were compared to a placebo and Listerine®. The newly formed dental plaque was analyzed by mass spectrometry (nLC-MS/MS). Results On average 1,916 metaproteins per sample were identified, which could be assigned to 116 genera and 1,316 protein functions. Listerine® reduced the number of metaproteins and their relative abundance, confirming the plaque inhibiting effect. The LPO-lozenges triggered mainly higher metaprotein abundances of early and secondary colonizers as well as bacteria associated with dental health but also periodontitis. Functional information indicated plaque biofilm growth. Conclusion In conclusion, the mechanisms on plaque biofilm formation of Listerine® and the LPO-system containing lozenges are different. In contrast to Listerine®, the lozenges led to a higher bacterial diversity.
Collapse
Affiliation(s)
- Alexander Rabe
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475Greifswald, Germany,CONTACT Alexander Rabe University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Felix-Hausdorff-Str. 8, 17489Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475Greifswald, Germany
| | - Thomas Kocher
- Center for Dentistry, Oral and Maxillofacial Medicine, Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, Dental School of University Medicine Greifswald, Fleischmannstraße 42-44, 17489
| | - Harald Below
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Walter-Rathenau-Straße 49 A17475Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475Greifswald, Germany
| | - Alexander Welk
- Center for Dentistry, Oral and Maxillofacial Medicine, Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, Dental School of University Medicine Greifswald, Fleischmannstraße 42-44, 17489
| |
Collapse
|
4
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
5
|
Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021; 9:496. [PMID: 33652903 PMCID: PMC7996936 DOI: 10.3390/microorganisms9030496] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiota represents a complex array of microbial species that influence the balance between the health and pathology of their surrounding environment. These microorganisms impart important biological benefits to their host, such as immune regulation and resistance to pathogen colonization. Dysbiosis of microbial communities in the gut and mouth precede many oral and systemic diseases such as cancer, autoimmune-related conditions, and inflammatory states, and can involve the breakdown of innate barriers, immune dysregulation, pro-inflammatory signaling, and molecular mimicry. Emerging evidence suggests that periodontitis-associated pathogens can translocate to distant sites to elicit severe local and systemic pathologies, which necessitates research into future therapies. Fecal microbiota transplantation, probiotics, prebiotics, and synbiotics represent current modes of treatment to reverse microbial dysbiosis through the introduction of health-related bacterial species and substrates. Furthermore, the emerging field of precision medicine has been shown to be an effective method in modulating host immune response through targeting molecular biomarkers and inflammatory mediators. Although connections between the human microbiome, immune system, and systemic disease are becoming more apparent, the complex interplay and future innovations in treatment modalities will become elucidated through continued research and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Brandon Khor
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nicholas Ray
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Kunal Mansukhani
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Karan A. Patel
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nasser Said-Al-Naief
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| |
Collapse
|
6
|
Weyrich LS. The evolutionary history of the human oral microbiota and its implications for modern health. Periodontol 2000 2020; 85:90-100. [PMID: 33226710 DOI: 10.1111/prd.12353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous biological and cultural factors influence the microbial communities (microbiota) that inhabit the human mouth, including diet, environment, hygiene, physiology, health status, genetics, and lifestyle. As oral microbiota can underpin oral and systemic diseases, tracing the evolutionary history of oral microbiota and the factors that shape its origins will unlock information to mitigate disease today. Despite this, the origins of many oral microbes remain unknown, and the key factors in the past that shaped our oral microbiota are only now emerging. High throughput DNA sequencing of oral microbiota using ancient DNA and comparative anthropological methodologies has been employed to investigate oral microbiota origins, revealing a complex, rich history. Here, I review the current literature on the factors that shaped and guided oral microbiota evolution, both in Europe and globally. In Europe, oral microbiota evolution was shaped by interactions with Neandertals, the adaptation of farming, widespread integration of industrialization, and postindustrial lifestyles that emerged after World War II. Globally, evidence for a multitude of different oral microbiota histories is emerging, likely supporting dissimilarities in modern oral health across discrete human populations. I highlight how these evolutionary changes are linked to the development of modern oral diseases and discuss the remaining factors that need to be addressed to improve this embryonic field of research. I argue that understanding the evolutionary history of our oral microbiota is necessary to identify new treatment and prevention options to improve oral and systemic health in the future.
Collapse
Affiliation(s)
- Laura S Weyrich
- Department of Anthropology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Li W, Ma ZS. FBA Ecological Guild: Trio of Firmicutes-Bacteroidetes Alliance against Actinobacteria in Human Oral Microbiome. Sci Rep 2020; 10:287. [PMID: 31937838 PMCID: PMC6959321 DOI: 10.1038/s41598-019-56561-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023] Open
Abstract
In a pioneering study, Zaura et al. (2009) found that majority of oral microbes fall within the five phyla including, Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. Subsequent studies further identified a set of microbes that were commonly shared among unrelated individuals (i.e., core). However, these existing studies may have not been designed to investigate the interactions among various core species. Here by harnessing the power of ecological network analysis, we identified some important ecological guilds in the form of network clusters. In particular, we found that the strongest cluster is an alliance between Firmicutes and Bacteroidetes against Actinobacteria (FBA-guild). Within the guild, we further identified two sub-guilds, the Actinobacteria-dominant sub-guild (ASG) and Firmicutes-dominant allied with Bacteroidetes sub-guild (FBSG). Furthermore, we identified so-termed guard nodes in both sub-guilds, and their role may be to inhibit the peer sub-guild given they held competitive interactions only with the outside nodes only but held cooperative interactions only with the internal nodes, which we termed civilian nodes given that they only held cooperative interactions. We postulated that FBA-guild might be to do with protection of oral health against some opportunistic pathogens from Corynebacterium and Actinomyces, the two major genera of Actinobacteria (target of FB alliance).
Collapse
Affiliation(s)
- Wendy Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
8
|
Mark Welch JL, Dewhirst FE, Borisy GG. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu Rev Microbiol 2019; 73:335-358. [PMID: 31180804 PMCID: PMC7153577 DOI: 10.1146/annurev-micro-090817-062503] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general.
Collapse
Affiliation(s)
| | - Floyd E. Dewhirst
- The Forsyth Institute, Cambridge MA 02142 and Harvard School of Dental Medicine, Boston MA 02115
| | | |
Collapse
|
9
|
Rabe A, Gesell Salazar M, Michalik S, Fuchs S, Welk A, Kocher T, Völker U. Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals. J Oral Microbiol 2019; 11:1654786. [PMID: 31497257 PMCID: PMC6720020 DOI: 10.1080/20002297.2019.1654786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.
Collapse
Affiliation(s)
- Alexander Rabe
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch-Institute, Wernigerode, Germany
| | - Alexander Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Velsko IM, Shaddox LM. Consistent and reproducible long-term in vitro growth of health and disease-associated oral subgingival biofilms. BMC Microbiol 2018; 18:70. [PMID: 29996764 PMCID: PMC6042318 DOI: 10.1186/s12866-018-1212-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several in vitro oral biofilm growth systems can reliably construct oral microbiome communities in culture, yet their stability and reproducibility through time has not been well characterized. Long-term in vitro growth of natural biofilms would enable use of these biofilms in both in vitro and in vivo studies that require complex microbial communities with minimal variation over a period of time. Understanding biofilm community dynamics in continuous culture, and whether they maintain distinct signatures of health and disease, is necessary to determine the reliability and applicability of such models to broader studies. To this end, we performed next-generation sequencing on biofilms grown from healthy and disease-site subgingival plaque for 80 days to assess stability and reliability of continuous oral biofilm growth. RESULTS Biofilms were grown from subgingival plaque collected from periodontitis-affected sites and healthy individuals for ten eight-day long generations, using hydroxyapatite disks. The bacterial community in each generation was determined using Human Oral Microbe Identification by Next-Generation Sequencing (HOMINGS) technology, and analyzed in QIIME. Profiles were steady through the ten generations, as determined by species abundance and prevalence, Spearman's correlation coefficient, and Faith's phylogenetic distance, with slight variation predominantly in low abundance species. Community profiles were distinct between healthy and disease site-derived biofilms as demonstrated by weighted UniFrac distance throughout the ten generations. Differentially abundant species between healthy and disease site-derived biofilms were consistent throughout the generations. CONCLUSIONS Healthy and disease site-derived biofilms can reliably maintain consistent communities through ten generations of in vitro growth. These communities maintain signatures of health and disease and of individual donors despite culture in identical environments. This subgingival oral biofilm growth and perpetuation model may prove useful to studies involving oral infection or cell stimulation, or those measuring microbial interactions, which require the same biofilms over a period of time.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, UK
- Present Address: Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Luciana M Shaddox
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA.
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Walther C, Meyer-Lueckel H, Conrads G, Esteves-Oliveira M, Henne K. Correlation between relative bacterial activity and lactate dehydrogenase gene expression of co-cultures in vitro. Clin Oral Investig 2018; 23:1225-1235. [PMID: 29980934 DOI: 10.1007/s00784-018-2547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/27/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The present study aims at correlating the relative bacterial activity with the H+ concentration and the ldh expression of caries-associated bacteria in co-cultures. MATERIALS AND METHODS Well plates were prepared with BHI medium and cultures of Lactobacillus paracasei and Fusobacterium nucleatum. Bacterial growth at 37 °C was measured using a microplate-photometer before and after adding sucrose to the samples. Samples of co-cultures (n = 12) and single-species cultures (n = 3) were taken and pH was assessed. Real-time quantitative PCRs were applied targeting the 16S-gene, the 16S-rRNA, the ldh-gene, and the ldh-mRNA. RESULTS For L. paracasei with sucrose, an increase in relative bacterial activity (62.8% ± 23.5% [mean, SE]) was observed, while F. nucleatum showed a clear decrease in relative bacterial activity (- 35.0% ± 9.6%). Simultaneously, the H+ concentration increased (1.15E-05 mol*l-1 ± 4.61E-07 mol*l-1). Consequently, a significant positive correlation was found between L. paracasei's relative bacterial activity and H+ concentration (Spearman rank correlation, r = 0.638; p = 0.002), while F. nucleatum exhibited a negative correlation (r = - 0.741; p ≤ 0.001). Furthermore L. paracasei with sucrose showed a moderate, but significant positive correlation between relative bacterial activity and ldh-expression (r = 0.307; p = 0.024). CONCLUSIONS AND CLINICAL RELEVANCE The relative bacterial activity after sucrose pulse showed a significant correlation not only to the acid production (H+ concentration) but also to ldh expression of L. paracasei. However, further research is required to confirm these findings in a mature biofilm in vivo.
Collapse
Affiliation(s)
- Carolin Walther
- Department of Operative Dentistry, Periodontology, and Preventive Dentistry, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Hendrik Meyer-Lueckel
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology, and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - Marcella Esteves-Oliveira
- Department of Operative Dentistry, Periodontology, and Preventive Dentistry, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Karsten Henne
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology, and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Vogtmann E, Hua X, Zhou L, Wan Y, Suman S, Zhu B, Dagnall CL, Hutchinson A, Jones K, Hicks BD, Sinha R, Shi J, Abnet CC. Temporal Variability of Oral Microbiota over 10 Months and the Implications for Future Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev 2018; 27:594-600. [PMID: 29475969 DOI: 10.1158/1055-9965.epi-17-1004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/22/2017] [Accepted: 02/09/2018] [Indexed: 01/01/2023] Open
Abstract
Background: Few studies have prospectively evaluated the association between oral microbiota and health outcomes. Precise estimates of the intrasubject microbial metric stability will allow better study planning. Therefore, we conducted a study to evaluate the temporal variability of oral microbiota.Methods: Forty individuals provided six oral samples using the OMNIgene ORAL kit and Scope mouthwash oral rinses approximately every two months over 10 months. DNA was extracted using the QIAsymphony and the V4 region of the 16S rRNA gene was amplified and sequenced using the MiSeq. To estimate temporal variation, we calculated intraclass correlation coefficients (ICCs) for a variety of metrics and examined stability after clustering samples into distinct community types using Dirichlet multinomial models (DMMs).Results: The ICCs for the alpha diversity measures were high, including for number of observed bacterial species [0.74; 95% confidence interval (CI): 0.65-0.82 and 0.79; 95% CI: 0.75-0.94] from OMNIgene ORAL and Scope mouthwash, respectively. The ICCs for the relative abundance of the top four phyla and beta diversity matrices were lower. Three clusters provided the best model fit for the DMM from the OMNIgene ORAL samples, and the probability of remaining in a specific cluster was high (59.5%-80.7%).Conclusions: The oral microbiota appears to be stable over time for multiple metrics, but some measures, particularly relative abundance, were less stable.Impact: We used this information to calculate stability-adjusted power calculations that will inform future field study protocols and experimental analytic designs. Cancer Epidemiol Biomarkers Prev; 27(5); 594-600. ©2018 AACR.
Collapse
Affiliation(s)
- Emily Vogtmann
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland.
| | - Xing Hua
- Biostatistics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland
| | - Liang Zhou
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yunhu Wan
- Biostatistics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland
| | - Shalabh Suman
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland.,Leidos Biomedical Research Laboratory, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland.,Leidos Biomedical Research Laboratory, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Casey L Dagnall
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland.,Leidos Biomedical Research Laboratory, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland.,Leidos Biomedical Research Laboratory, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland.,Leidos Biomedical Research Laboratory, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland.,Leidos Biomedical Research Laboratory, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jianxin Shi
- Biostatistics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland
| | - Christian C Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
13
|
Hall MW, Singh N, Ng KF, Lam DK, Goldberg MB, Tenenbaum HC, Neufeld JD, G Beiko R, Senadheera DB. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. NPJ Biofilms Microbiomes 2017. [PMID: 28649403 PMCID: PMC5445578 DOI: 10.1038/s41522-016-0011-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oral microbes form a complex and dynamic biofilm community, which is subjected to daily host and environmental challenges. Dysbiosis of the oral biofilm is correlated with local and distal infections and postulating a baseline for the healthy core oral microbiota provides an opportunity to examine such shifts during the onset and recurrence of disease. Here we quantified the daily, weekly, and monthly variability of the oral microbiome by sequencing the largest oral microbiota time-series to date, covering multiple oral sites in ten healthy individuals. Temporal dynamics of salivary, dental, and tongue consortia were examined by high-throughput 16S rRNA gene sequencing over 90 days, with four individuals sampled additionally 1 year later. Distinct communities were observed between dental, tongue, and salivary samples, with high levels of similarity observed between the tongue and salivary communities. Twenty-six core OTUs that classified within Streptococcus, Fusobacterium, Haemophilus, Neisseria, Prevotella, and Rothia genera were present in ≥95% samples and accounted for ~65% of the total sequence data. Phylogenetic diversity varied from person to person, but remained relatively stable within individuals over time compared to inter-individual variation. In contrast, the composition of rare microorganisms was highly variable over time, within most individuals. Using machine learning, an individual's oral microbial assemblage could be correctly assigned to them with 88–97% accuracy, depending on the sample site; 83% of samples taken a year after initial sampling could be confidently traced back to the source subject. A study of bacteria in the mouth reveals insights into their diversity, stability, and variability among people and over time. By tracking daily, weekly, and monthly fluctuations of plaque and salivary bacteria in ten healthy volunteers, Dilani Senadheera at the Faculty of Dentistry, University of Toronto and co-researchers in Canada reveal significant differences in the “microbiome” present in dental, tongue and saliva samples over time. They found considerable variation in these communities between individuals, sufficient to identify a person with “bacterial fingerprints” using plaque or saliva even after 1 year. The researchers reveal a “core community” that spans different persons, oral sites, and time, suggesting some level of stability. This study is useful to understand the diversity and community drifts in different oral sites over time, which is important when plaque and saliva are used for bacterial analysis in diagnostic, risk-prediction, and forensic applications.
Collapse
Affiliation(s)
- Michael W Hall
- Faculty of Computer Science, Dalhousie University, Halifax, NS Canada
| | - Natasha Singh
- Faculty of Dentistry, University of Toronto, Toronto, ON Canada
| | - Kester F Ng
- Faculty of Dentistry, University of Toronto, Toronto, ON Canada
| | - David K Lam
- Faculty of Dentistry, University of Toronto, Toronto, ON Canada
| | - Michael B Goldberg
- Faculty of Dentistry, University of Toronto, Toronto, ON Canada.,Department of Dentistry, Division of Research, Mount Sinai Hospital, Toronto, Ontario Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON Canada.,Department of Dentistry, Division of Research, Mount Sinai Hospital, Toronto, Ontario Canada.,School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, ON Canada
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, NS Canada
| | | |
Collapse
|
14
|
Sampaio-Maia B, Caldas IM, Pereira ML, Pérez-Mongiovi D, Araujo R. The Oral Microbiome in Health and Its Implication in Oral and Systemic Diseases. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:171-210. [PMID: 27926431 DOI: 10.1016/bs.aambs.2016.08.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The oral microbiome can alter the balance between health and disease, locally and systemically. Within the oral cavity, bacteria, archaea, fungi, protozoa, and viruses may all be found, each having a particular role, but strongly interacting with each other and with the host, in sickness or in health. A description on how colonization occurs and how the oral microbiome dynamically evolves throughout the host's life is given. In this chapter the authors also address oral and nonoral conditions in which oral microorganisms may play a role in the etiology and progression, presenting the up-to-date knowledge on oral dysbiosis as well as the known underlying pathophysiologic mechanisms involving oral microorganisms in each condition. In oral pathology, oral microorganisms are associated with several diseases, namely dental caries, periodontal diseases, endodontic infections, and also oral cancer. In systemic diseases, nonoral infections, adverse pregnancy outcomes, cardiovascular diseases, and diabetes are among the most prevalent pathologies linked with oral cavity microorganisms. The knowledge on how colonization occurs, how oral microbiome coevolves with the host, and how oral microorganisms interact with each other may be a key factor to understand diseases etiology and progression.
Collapse
Affiliation(s)
| | - I M Caldas
- Universidade do Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; Universidade de Coimbra, Portugal
| | | | - D Pérez-Mongiovi
- Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - R Araujo
- Universidade do Porto, Portugal; Flinders University, Adelaide, SA, Australia
| |
Collapse
|
15
|
Effects of Specimen Collection Methodologies and Storage Conditions on the Short-Term Stability of Oral Microbiome Taxonomy. Appl Environ Microbiol 2016; 82:5519-29. [PMID: 27371581 DOI: 10.1128/aem.01132-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/25/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Community profiling of the oral microbiome requires the recovery of quality sequences in order to accurately describe microbial community structure and composition. Our objective was to assess the effects of specimen collection method, storage medium, and storage conditions on the relative abundance of taxa in saliva and plaque identified using 16S rRNA genes. We also assessed short-term changes in taxon composition and relative abundance and compared the salivary and dental plaque communities in children and adults. Over a 2-week period, four successive saliva and dental plaque specimens were collected from four adults with no dental decay (108 samples), and two successive specimens were collected from six children with four or more erupted teeth (48 samples). There were minimal differences in community composition at the phylum and operational taxonomic unit levels between dental plaque collection using a scaler and collection using a CytoSoft brush. Plaque samples stored in OMNIgene medium showed higher within-sample Shannon diversity, were compositionally different, and were more similar to each other than plaque stored in liquid dental transport medium. Saliva samples stored in OMNIgene recovered similar communities for at least a week following storage at room temperature. However, the microbial communities recovered from plaque and saliva stored in OMNIgene were significantly different in composition from their counterparts stored in liquid dental transport medium. Dental plaque communities collected from the same tooth type over four successive visits from the same adult did not significantly differ in structure or composition. IMPORTANCE Large-scale epidemiologic studies require collection over time and space, often with multiple teams collecting, storing, and processing data. Therefore, it is essential to understand how sensitive study results are to modest changes in collection and storage protocols that may occur with variation in personnel, resources available at a study site, and shipping requirements. The research presented in this paper measures the effects of multiple storage parameters and collection methodologies on the measured ecology of the oral microbiome from healthy adults and children. These results will potentially enable investigators to conduct oral microbiome studies at maximal efficiency by guiding informed administrative decisions pertaining to the necessary field or clinical work.
Collapse
|
16
|
Utter DR, Mark Welch JL, Borisy GG. Individuality, Stability, and Variability of the Plaque Microbiome. Front Microbiol 2016; 7:564. [PMID: 27148241 PMCID: PMC4840391 DOI: 10.3389/fmicb.2016.00564] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/04/2016] [Indexed: 01/13/2023] Open
Abstract
Dental plaque is a bacterial biofilm composed of a characteristic set of organisms. Relatively little information from cultivation-independent, high-throughput analyses has been published on the temporal dynamics of the dental plaque microbiome. We used Minimum Entropy Decomposition, an information theory-based approach similar to oligotyping that provides single-nucleotide resolution, to analyze a previously published time series data set and investigate the dynamics of the plaque microbiome at various analytic and taxonomic levels. At both the genus and 97% Operational Taxonomic Unit (OTU) levels of resolution, the range of variation within each individual overlapped that of other individuals in the data set. When analyzed at the oligotype level, however, the overlap largely disappeared, showing that single-nucleotide resolution enables differentiation of individuals from one another without ambiguity. The overwhelming majority of the plaque community in all samples was made up of bacteria from a moderate number of plaque-typical genera, indicating that the overall community framework is shared among individuals. Each of these genera fluctuated in abundance around a stable mean that varied between individuals, with some genera having higher inter-individual variability than others. Thus, at the genus level, differences between individuals lay not in the identity of the major genera but in consistently differing proportions of these genera from mouth to mouth. However, at the oligotype level, we detected oligotype “fingerprints,” a highly individual-specific set of persistently abundant oligotypes fluctuating around a stable mean over time. For example, within the genus Corynebacterium, more than a dozen oligotypes were detectable in each individual, of which a different subset reached high abundance in any given person. This pattern suggests that each mouth contains a subtly different community of organisms. We also compared the Chinese plaque community characterized here to previously characterized Western plaque communities, as represented by analyses of data emerging from the Human Microbiome Project, and found no major differences between Chinese and Western supragingival plaque. In conclusion, we found the plaque microbiome to be highly individualized at the oligotype level and characterized by stability of community membership, with variability in the relative abundance of community members between individuals and over time.
Collapse
Affiliation(s)
- Daniel R Utter
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA; Department of Microbiology, The Forsyth InstituteCambridge, MA, USA
| | - Jessica L Mark Welch
- Department of Microbiology, The Forsyth InstituteCambridge, MA, USA; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods Hole, MA, USA
| | - Gary G Borisy
- Department of Microbiology, The Forsyth Institute Cambridge, MA, USA
| |
Collapse
|