1
|
Fan SP, Chen YF, Li CH, Kuo YC, Lee NC, Chien YH, Hwu WL, Tseng TC, Su TH, Hsu CT, Chen HL, Lin CH, Ni YH. Topographical metal burden correlates with brain atrophy and clinical severity in Wilson's disease. Neuroimage 2024; 299:120829. [PMID: 39233127 DOI: 10.1016/j.neuroimage.2024.120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a post-processing technique that creates brain susceptibility maps reflecting metal burden through tissue magnetic susceptibility. We assessed topographic differences in magnetic susceptibility between participants with and without Wilson's disease (WD), correlating these findings with clinical severity, brain volume, and biofluid copper and iron indices. METHODS A total of 43 patients with WD and 20 unaffected controls, were recruited. QSM images were derived from a 3T MRI scanner. Clinical severity was defined using the minimal Unified Wilson's Disease Rating Scale (M-UWDRS) and Montreal Cognitive Assessment scoring. Differences in magnetic susceptibilities between groups were evaluated using general linear regression models, adjusting for age and sex. Correlations between the susceptibilities and clinical scores were analyzed using Spearman's method. RESULTS In age- and sex-adjusted analyses, magnetic susceptibility values were increased in WD patients compared with controls, including caudate nucleus, putamen, globus pallidus, and substantia nigra (all p < 0.01). Putaminal susceptibility was greater with an initial neuropsychiatric presentation (n = 25) than with initial hepatic dysfunction (n = 18; p = 0.04). Susceptibility changes correlated negatively with regional brain volume in almost all topographic regions. Serum ferritin, but not serum copper or ceruloplasmin, correlated positively with magnetic susceptibility level in the caudate nucleus (p = 0.04), putamen (p = 0.04) and the hippocampus (p = 0.03). The dominance of magnetic susceptibility in cortical over subcortical regions correlated with M-UWDRS scores (p < 0.01). CONCLUSION The magnetic susceptibility changes could serve as a surrogate marker for patients with WD.
Collapse
Affiliation(s)
- Sung-Pin Fan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hsuan Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Yih-Chih Kuo
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Tai-Chung Tseng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Hsu
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan; Department of Pediatrics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
2
|
Mohammadi S, Ghaderi S. Parkinson's disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques - A systematic review and literature analysis. Heliyon 2024; 10:e27950. [PMID: 38689949 PMCID: PMC11059419 DOI: 10.1016/j.heliyon.2024.e27950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang SJ, Geng H, Cheng SR, Xu CC, Zhang RQ, Wang Y, Wu T, Li B, Wang T, Han YS, Ding ZH, Sun YN, Wang X, Han YZ, Cheng N. A weighted cranial diffusion-weighted imaging scale for Wilson's disease. Front Neurosci 2023; 17:1186053. [PMID: 37650098 PMCID: PMC10463731 DOI: 10.3389/fnins.2023.1186053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Objectives Cranial magnetic resonance imaging (MRI) could be a crucial tool for the assessment for neurological symptoms in patients with Wilson's disease (WD). Diffusion-weighted imaging (DWI) hyperintensity reflects the acute brain injuries, which mainly occur in specific brain regions. Therefore, this study aimed to develop a weighted cranial DWI scale for patients with WD, with special focus on specific brain regions. Materials and methods In total, 123 patients with WD were enrolled, 118 of whom underwent 1.5 T-MRI on admission. The imaging score was calculated as described previously and depended on the following sequences: one point was acquired when abnormal intensity occurred in the T1, T2, and fluid-attenuation inversion recovery sequences, and two points were acquired when DWI hyperintensity were found. Consensus weighting was conducted based on the symptoms and response to treatment. Results Intra-rater agreement were good (r = 0.855 [0.798-0.897], p < 0.0001). DWI hyperintensity in the putamen was a high-risk factor for deterioration during de-copper therapy (OR = 8.656, p < 0.05). The high-risk factors for readmission for intravenous de-copper therapies were DWI hyperintensity in the midbrain (OR = 3.818, p < 0.05) and the corpus callosum (OR = 2.654, p < 0.05). Both scoring systems had positive correlation with UWDRS scale (original semi-quantitative scoring system, r = 0.35, p < 0.001; consensus semi-quantitative scoring system, r = 0.351, p < 0.001.). Compared to the original scoring system, the consensus scoring system had higher correlations with the occurrence of deterioration (OR = 1.052, 95%CI [1.003, 1.0103], p < 0.05) and readmission for intravenous de-copper therapy (OR = 1.043, 95%CI [1.001, 1.086], p < 0.05). Conclusion The predictive performance of the consensus semi-quantitative scoring system for cranial MRI was improved to guide medication, healthcare management, and prognosis prediction in patients with WD. For every point increase in the neuroimaging score, the risk of exacerbations during treatment increased by 5.2%, and the risk of readmission to the hospital within 6 months increased by 4.3%.
Collapse
Affiliation(s)
- Shi-jing Wang
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
- Hospital Affiliated to the Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Geng
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
- Department of Biophysics, University of Science and Technology of China, Hefei, China
| | - Si-rui Cheng
- Department of Economics, Nankai University, Tainjin, China
| | - Chen-chen Xu
- Hospital Affiliated to the Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Rui-qi Zhang
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
- Department of Biophysics, University of Science and Technology of China, Hefei, China
| | - Yu Wang
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
- Department of Biophysics, University of Science and Technology of China, Hefei, China
| | - Tong Wu
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Bo Li
- Hospital Affiliated to the Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Tao Wang
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yong-sheng Han
- Hospital Affiliated to the Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Zeng-hui Ding
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yi-ning Sun
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xun Wang
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
- Hospital Affiliated to the Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Yong-zhu Han
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
- Hospital Affiliated to the Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Nan Cheng
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
- Hospital Affiliated to the Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Shribman S, Bocchetta M, Sudre CH, Acosta-Cabronero J, Burrows M, Cook P, Thomas DL, Gillett GT, Tsochatzis EA, Bandmann O, Rohrer JD, Warner TT. Neuroimaging correlates of brain injury in Wilson's disease: a multimodal, whole-brain MRI study. Brain 2022; 145:263-275. [PMID: 34289020 PMCID: PMC8967100 DOI: 10.1093/brain/awab274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/25/2021] [Accepted: 07/04/2021] [Indexed: 11/23/2022] Open
Abstract
Wilson's disease is an autosomal-recessive disorder of copper metabolism with neurological and hepatic presentations. Chelation therapy is used to 'de-copper' patients but neurological outcomes remain unpredictable. A range of neuroimaging abnormalities have been described and may provide insights into disease mechanisms, in addition to prognostic and monitoring biomarkers. Previous quantitative MRI analyses have focused on specific sequences or regions of interest, often stratifying chronically treated patients according to persisting symptoms as opposed to initial presentation. In this cross-sectional study, we performed a combination of unbiased, whole-brain analyses on T1-weighted, fluid-attenuated inversion recovery, diffusion-weighted and susceptibility-weighted imaging data from 40 prospectively recruited patients with Wilson's disease (age range 16-68). We compared patients with neurological (n = 23) and hepatic (n = 17) presentations to determine the neuroradiological sequelae of the initial brain injury. We also subcategorized patients according to recent neurological status, classifying those with neurological presentations or deterioration in the preceding 6 months as having 'active' disease. This allowed us to compare patients with active (n = 5) and stable (n = 35) disease and identify imaging correlates for persistent neurological deficits and copper indices in chronically treated, stable patients. Using a combination of voxel-based morphometry and region-of-interest volumetric analyses, we demonstrate that grey matter volumes are lower in the basal ganglia, thalamus, brainstem, cerebellum, anterior insula and orbitofrontal cortex when comparing patients with neurological and hepatic presentations. In chronically treated, stable patients, the severity of neurological deficits correlated with grey matter volumes in similar, predominantly subcortical regions. In contrast, the severity of neurological deficits did not correlate with the volume of white matter hyperintensities, calculated using an automated lesion segmentation algorithm. Using tract-based spatial statistics, increasing neurological severity in chronically treated patients was associated with decreasing axial diffusivity in white matter tracts whereas increasing serum non-caeruloplasmin-bound ('free') copper and active disease were associated with distinct patterns of increasing mean, axial and radial diffusivity. Whole-brain quantitative susceptibility mapping identified increased iron deposition in the putamen, cingulate and medial frontal cortices of patients with neurological presentations relative to those with hepatic presentations and neurological severity was associated with iron deposition in widespread cortical regions in chronically treated patients. Our data indicate that composite measures of subcortical atrophy provide useful prognostic biomarkers, whereas abnormal mean, axial and radial diffusivity are promising monitoring biomarkers. Finally, deposition of brain iron in response to copper accumulation may directly contribute to neurodegeneration in Wilson's disease.
Collapse
Affiliation(s)
- Samuel Shribman
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing, University College London, London WC1E 7HB, UK
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
- Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK
| | | | - Maggie Burrows
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Paul Cook
- Department of Clinical Biochemistry, Southampton General Hospital, Southampton SO16 6YD, UK
| | - David L Thomas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Godfrey T Gillett
- Department of Clinical Chemistry, Northern General Hospital, Sheffield S5 7AU, UK
| | - Emmanuel A Tsochatzis
- UCL Institute of Liver and Digestive Health and Royal Free Hospital, London NW3 2PF, UK
| | - Oliver Bandmann
- Sheffield Institute of Translational Neuroscience, Sheffield S10 2HQ, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| |
Collapse
|
5
|
An Updated Overview of the Magnetic Resonance Imaging of Brain Iron in Movement Disorders. Behav Neurol 2022; 2022:3972173. [PMID: 35251368 PMCID: PMC8894064 DOI: 10.1155/2022/3972173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 01/12/2023] Open
Abstract
Brain iron load is one of the most important neuropathological hallmarks in movement disorders. Specifically, the iron provides most of the paramagnetic metal signals in the brain and its accumulation seems to play a key role, although not completely explained, in the degeneration of the basal ganglia, as well as other brain structures. Moreover, iron distribution patterns have been implicated in depicting different movement disorders. This work reviewed current literature on Magnetic Resonance Imaging for Brain Iron Detection and Quantification (MRI-BIDQ) in neurodegenerative processes underlying movement disorders.
Collapse
|
6
|
Ishikawa H, Mandel-Brehm C, Shindo A, Cady MA, Mann SA, Niwa A, Miyashita K, Ii Y, Zorn KC, Taniguchi A, Maeda M, Wilson MR, DeRisi JL, Tomimoto H. Long-term MRI changes in a patient with Kelch-like protein 11-associated paraneoplastic neurological syndrome. Eur J Neurol 2021; 28:4261-4266. [PMID: 34561925 DOI: 10.1111/ene.15120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to identify the long-term radiological changes, autoantibody specificities, and clinical course in a patient with kelch-like protein 11 (KLHL11)-associated paraneoplastic neurological syndrome (PNS). METHODS Serial brain magnetic resonance images were retrospectively assessed. To test for KLHL11 autoantibodies, longitudinal cerebrospinal fluid (CSF) and serum samples were screened by Phage-display ImmunoPrecipitation and Sequencing (PhIP-Seq). Immunohistochemistry was also performed to assess for the presence of KLHL11 in the patient's seminoma tissue. RESULTS A 42-year-old man presented with progressive ataxia and sensorineural hearing loss. Metastatic seminoma was detected 11 months after the onset of the neurological symptoms. Although immunotherapy was partially effective, his cerebellar ataxia gradually worsened over the next 8 years. Brain magnetic resonance imaging revealed progressive brainstem and cerebellar atrophy with a "hot-cross-bun sign", and low-signal intensity on susceptibility-weighted imaging (SWI) in the substantia nigra, red nucleus and dentate nuclei. PhIP-Seq enriched for KLHL11-derived peptides in all samples. Immunohistochemical staining of mouse brain with the patient CSF showed co-localization with a KLHL11 commercial antibody in the medulla and dentate nucleus. Immunohistochemical analysis of seminoma tissue showed anti-KLHL11 antibody-positive particles in cytoplasm. CONCLUSIONS This study suggests that KLHL11-PNS should be included in the differential diagnosis for patients with brainstem and cerebellar atrophy and signal changes not only on T2-FLAIR but also on SWI, which might otherwise be interpreted as secondary to a neurodegenerative disease such as multiple system atrophy.
Collapse
Affiliation(s)
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | | | - Martha A Cady
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Atsushi Niwa
- Department of Neurology, Mie University, Mie, Japan
| | | | - Yuichiro Ii
- Department of Neurology, Mie University, Mie, Japan
| | - Kelsey C Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | | | - Masayuki Maeda
- Department of Neuroradiology, Mie University, Mie, Japan
| | - Michael R Wilson
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| | | |
Collapse
|
7
|
Wang Y, Jia Z, Lyu Y, Dong Q, Li S, Hu W. Multimodal magnetic resonance imaging analysis in the characteristics of Wilson's disease: A case report and literature review. Open Life Sci 2021; 16:793-799. [PMID: 34458581 PMCID: PMC8374231 DOI: 10.1515/biol-2021-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
Wilson’s disease (WD) is an inherited disorder of copper metabolism. Multimodal magnetic resonance imaging (MRI) has been reported to provide evidence of the extent and severity of brain lesions. However, there are few studies related to the diagnosis of WD with multimodal MRI. Here, we reported a WD patient who was subjected to Sanger sequencing, conventional MRI, and multimodal MRI examinations, including susceptibility-weighted imaging (SWI) and arterial spin labeling (ASL). Sanger sequencing demonstrated two pathogenic mutations in exon 8 of the ATP7B gene. Slit-lamp examination revealed the presence of Kayser–Fleischer rings in both eyes, as well as low serum ceruloplasmin and high 24-h urinary copper excretion on admission. Although the substantia nigra, red nucleus, and lenticular nucleus on T1-weighted imaging and T2-weighted imaging were normal, SWI and ASL showed hypointensities in these regions. Besides, decreased cerebral blood flow was found in the lenticular nucleus and the head of caudate nucleus. The patient recovered well after 1 year and 9 months of follow-up, with only a Unified Wilson Disease Rating Scale score of 1 for neurological symptom. Brain multimodal MRI provided a thorough insight into the WD, which might make up for the deficiency of conventional MRI.
Collapse
Affiliation(s)
- Yun Wang
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing 100020, China
| | - Zejin Jia
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing 100020, China
| | - Yuelei Lyu
- Department of Imaging, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing 100020, China
| | - Qian Dong
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing 100020, China
| | - Shujuan Li
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing 100020, China
| | - Wenli Hu
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing 100020, China
| |
Collapse
|
8
|
Tinaz S, Arora J, Nalamada K, Vives-Rodriguez A, Sezgin M, Robakis D, Patel A, Constable RT, Schilsky ML. Structural and functional brain changes in hepatic and neurological Wilson disease. Brain Imaging Behav 2020; 15:2269-2282. [PMID: 33244627 DOI: 10.1007/s11682-020-00420-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Wilson disease (WD) can manifest with hepatic or neuropsychiatric symptoms. Our understanding of the in vivo brain changes in WD, particularly in the hepatic phenotype, is limited. Thirty subjects with WD and 30 age- and gender-matched controls participated. WD group underwent neuropsychiatric assessment. Unified WD Rating Scale neurological exam scores were used to determine neurological (WDN, score > 0) and hepatic-only (WDH, score 0) subgroups. All subjects underwent 3 Tesla anatomical and resting-state functional MRI. Diffusion tensor imaging (DTI) and susceptibility-weighted imaging (SWI) were performed only in the WD group. Volumetric, DTI, and functional connectivity analyses were performed to determine between-group differences. WDN and WDH groups were matched in demographic and psychiatric profiles. The entire WD group compared to controls showed significant thinning in the bilateral superior frontal cortex. The WDN group compared to control and WDH groups showed prominent structural brain changes including significant striatal and thalamic atrophy, more subcortical hypointense lesions on SWI, and diminished white matter integrity in the bilateral anterior corona radiata and corpus callosum. However, the WDH group also showed significant white matter volume loss compared to controls. The functional connectivity between the frontostriatal nodes was significantly reduced in the WDN group, whereas that of the hippocampus was significantly increased in the WDH group compared to controls. In summary, structural and functional brain changes were present even in neurologically non-manifesting WD patients in this cross-sectional study. Longitudinal brain MRI scans may be useful as biomarkers for prognostication and optimization of treatment strategies in WD.
Collapse
Affiliation(s)
- Sule Tinaz
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA. .,Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Jagriti Arora
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Keerthana Nalamada
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - Ana Vives-Rodriguez
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - Mine Sezgin
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA.,Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Daphne Robakis
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA.,Department of Neurology, State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Amar Patel
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L Schilsky
- Departments of Medicine and Surgery, Sections of Digestive Diseases and Transplant and Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Yuan XZ, Li GY, Chen JL, Li JQ, Wang XP. Paramagnetic Metal Accumulation in the Deep Gray Matter Nuclei Is Associated With Neurodegeneration in Wilson's Disease. Front Neurosci 2020; 14:573633. [PMID: 33041766 PMCID: PMC7525019 DOI: 10.3389/fnins.2020.573633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Background Neuropathological studies have revealed copper and iron accumulation in the deep gray matter (DGM) nuclei of patients with Wilson’s disease (WD). However, the association between metal accumulation and neurodegeneration in WD has not been well studied in vivo. The study was aimed to investigate whether metal accumulation in the DGM was associated with the structural and functional changes of DGM in neurological WD patients. Methods Seventeen neurological WD patients and 20 healthy controls were recruited for the study. Mean bulk susceptibility values and volumes of DGM were obtained from quantitative susceptibility mapping (QSM). Regions of interest including the head of the caudate nucleus, globus pallidus, putamen, thalamus, substantia nigra, red nucleus, and dentate nucleus were manually segmented. The susceptibility values and volumes of DGM in different groups were compared using a linear regression model. Correlations between susceptibility values and volumes of DGM and Unified Wilson’s Disease Rating Scale (UWDRS) neurological subscores were investigated. Results The susceptibility values of all examined DGM in WD patients were higher than those in healthy controls (P < 0.05). Volume reductions were observed in the head of the caudate nucleus, globus pallidus, putamen, thalamus, and substantia nigra of WD patients (P < 0.001). Susceptibility values were negatively correlated with the volumes of the head of the caudate nucleus (rp = −0.657, P = 0.037), putamen (rp = −0.667, P = 0.037), and thalamus (rp = −0.613, P = 0.046) in WD patients. UWDRS neurological subscores were positively correlated with the susceptibility values of all examined DGM. The susceptibility values of putamen, head of the caudate nucleus, and dentate nucleus could well predict UWDRS neurological subscores. Conclusion Our study provided in vivo evidence that paramagnetic metal accumulation in the DGM was associated with DGM atrophy and neurological impairment. The susceptibility of DGM could be used as a biomarker to assess the severity of neurodegeneration in WD.
Collapse
Affiliation(s)
- Xiang-Zhen Yuan
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai-Ying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jia-Lin Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Dusek P, Litwin T, Członkowska A. Neurologic impairment in Wilson disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S64. [PMID: 31179301 DOI: 10.21037/atm.2019.02.43] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurologic symptoms in Wilson disease (WD) appear at an older age compared to hepatic symptoms and manifest in patients with misdiagnosed liver disease, in patients when the hepatic stage is clinically silent, in the case of non-compliance with anti-copper treatment, or with treatment failure. Neurologic symptoms in WD are caused by nervous tissue damage that is primarily a consequence of extrahepatic copper toxicity. Copper levels in brain tissues as well as cerebrospinal fluid (CSF) are diffusely increased by a factor of 10 and its toxicity involves various mechanisms such as mitochondrial toxicity, oxidative stress, cell membrane damage, crosslinking of DNA, and inhibition of enzymes. Excess copper is initially taken-up and buffered by astrocytes and oligodendrocytes but ultimately causes dysfunction of blood-brain-barrier and demyelination. Most severe neuropathologic abnormalities, including tissue rarefaction, reactive astrogliosis, myelin palor, and presence of iron-laden macrophages, are typically present in the putamen while other basal ganglia, thalami, and brainstem are usually less affected. The most common neurologic symptoms of WD are movement disorders including tremor, dystonia, parkinsonism, ataxia and chorea which are associated with dysphagia, dysarthria and drooling. Patients usually manifest with various combinations of these symptoms while purely monosymptomatic presentation is rare. Neurologic symptoms are largely reversible with anti-copper treatment, but a significant number of patients are left with residual impairment. The approach for symptomatic treatment in WD is based on guidelines for management of common movement disorders. The vast majority of WD patients with neurologic symptoms have abnormalities on brain magnetic resonance imaging (MRI). Pathologic MRI changes include T2 hyperintensities in the basal ganglia, thalami and white matter, T2 hypointensities in the basal ganglia, and atrophy. Most importantly, brain damage and neurologic symptoms can be prevented with an early initiation of anti-copper treatment. Introducing population WD screening, e.g., by exome sequencing genetic methods, would allow early treatment and decrease the neurologic burden of WD.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia.,Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Tomasz Litwin
- 2nd Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- 2nd Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
11
|
Poujois A, Woimant F. Wilson's disease: A 2017 update. Clin Res Hepatol Gastroenterol 2018; 42:512-520. [PMID: 29625923 DOI: 10.1016/j.clinre.2018.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 02/04/2023]
Abstract
Wilson's disease (WD) is characterised by a deleterious accumulation of copper in the liver and brain. It is one of those rare genetic disorders that benefits from effective and lifelong treatments that have dramatically transformed the prognosis of the disease. In Europe, its clinical prevalence is estimated at between 1.2 and 2/100,000 but the genetic prevalence is higher, at around 1/7000. Incomplete penetrance of the gene or the presence of modifier genes may account for the difference between the calculated genetic prevalence and the number of patients diagnosed with WD. The clinical spectrum of WD is broader as expected with mild clinical presentations and late onset of the disease after the age of 40 in 6% of patients. WD is usually suspected when ceruloplasmin and serum copper levels are low and 24h urinary copper excretion is elevated. Recently, a major diagnostic advance was achieved with implementation of the direct assay of "free copper", or exchangeable copper (CuEXC). The relative exchangeable copper (REC) that corresponds to the ratio between CuEXC and total serum copper enables a diagnosis of WD with high sensitivity and specificity when REC>18.5%. Moreover, CuEXC values at diagnosis are a marker of extrahepatic involvement and its severity. A value of >2.08μmol/L is suggestive of corneal and brain involvement (Se=86%, Sp=94%), and the disease will be more clinically and radiologically severe as values rise. The use of FibroScan® is becoming more widespread to assess liver stiffness measurements in WD patients. 6.6kPa is considered to be a threshold value between mild and moderate fibrosis, whereas a value higher than 8.4 is indicative of severe fibrosis. More studies are now necessary to confirm the usefulness of Fibroscan® in managing chronic therapy for WD patients. Treatment of this disease is based on an initial active and prolonged chelating phase (with D-Penicillamine or Trientine) followed by maintenance with Trientine or zinc salt. The two major problems that may be encountered are neurological worsening during the initial phase and non-compliance with treatment during maintenance therapy. Liver transplantation is the recommended therapeutic option in WD with acute liver failure or end-stage liver cirrhosis; its indication should be considered when neurological status deteriorates rapidly despite effective chelation. Regular clinical, biological and liver ultrasound follow-up is essential to evaluate efficacy, tolerance and treatment compliance, but also to detect the onset of hepatocellular carcinoma on a cirrhotic liver. There are hopes in the near future with the introduction of a new chelator and inhibitor of copper absorption, tetrathiomolybdate (TTM) and the development of gene therapy.
Collapse
Affiliation(s)
- Aurélia Poujois
- Neurology Department, AP-HP, Lariboisière University Hospital, Paris, France; National Reference Centre for Wilson's Disease, AP-HP, Lariboisière University Hospital, Paris, France.
| | - France Woimant
- Neurology Department, AP-HP, Lariboisière University Hospital, Paris, France; National Reference Centre for Wilson's Disease, AP-HP, Lariboisière University Hospital, Paris, France
| |
Collapse
|
12
|
Russo C, Ardissone A, Freri E, Gasperini S, Moscatelli M, Zorzi G, Panteghini C, Castellotti B, Garavaglia B, Nardocci N, Chiapparini L. Substantia Nigra Swelling and Dentate Nucleus T2 Hyperintensity May Be Early Magnetic Resonance Imaging Signs of β-Propeller Protein-Associated Neurodegeneration. Mov Disord Clin Pract 2018; 6:51-56. [PMID: 30746416 DOI: 10.1002/mdc3.12693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background and Methods Mutations in WDR45 cause β-propeller protein-associated neurodegeneration (BPAN), a type of neurodegeneration with brain iron accumulation (NBIA). We reviewed clinical and MRI findings in 4 patients with de novo WDR45 mutations. Results Psychomotor delay and movement disorders were present in all cases; early-onset epileptic encephalopathy was present in 3. In all cases, first MRI showed: prominent bilateral SN enlargement, bilateral dentate nuclei T2-hyperintensity, and corpus callosum thinning. Iron deposition in the SN and globus pallidus (GP) only became evident later. Diffuse cerebral atrophy was present in 3 cases. Conclusions In this series, SN swelling and dentate nucleus T2 hyperintensity were early signs of BPAN, later followed by progressive iron deposition in the SN and GP. When clinical suspicion is raised, MRI is crucial for identifying early features suggesting this type of NBIA.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Advanced Biomedical Sciences "Federico II" University of Naples Naples Italy
| | - Anna Ardissone
- Department of Paediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy.,Department of Molecular and Translational Medicine, DIMET University of Milan-Bicocca Milan Italy
| | - Elena Freri
- Department of Paediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Serena Gasperini
- Metabolic Rare Diseases Unit, Paediatric Department, MBBM Foundation San Gerardo Hospital Monza Italy
| | - Marco Moscatelli
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Giovanna Zorzi
- Department of Paediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Nardo Nardocci
- Department of Paediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| |
Collapse
|
13
|
Berkowitz BA. Oxidative stress measured in vivo without an exogenous contrast agent using QUEST MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:94-100. [PMID: 29705036 PMCID: PMC5963509 DOI: 10.1016/j.jmr.2018.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/24/2018] [Indexed: 05/10/2023]
Abstract
Decades of experimental studies have implicated excessive generation of reactive oxygen species (ROS) in the decline of tissue function during normal aging, and as a pathogenic factor in a vast array of fatal or debilitating morbidities. This massive body of work has important clinical implications since many antioxidants are FDA approved, readily cross blood-tissue barriers, and are effective at improving disease outcomes. Yet, the potential benefits of antioxidants have remained largely unrealized in patients because conventional methods cannot determine the dose, timing, and drug combinations to be used in clinical trials to localize and decrease oxidative stress. To address this major problem and improve translational success, new methods are urgently needed that non-invasively measure the same ROS biomarker both in animal models and patients with high spatial resolution. Here, we summarize a transformative solution based on a novel method: QUEnch-assiSTed MRI (QUEST MRI). The QUEST MRI index is a significant antioxidant-induced improvement in pathophysiology, or a reduction in 1/T1 (i.e., R1). The latter form of QUEST MRI provides a unique measure of uncontrolled production of endogenous, paramagnetic reactive oxygen species (ROS). QUEST MRI results to-date have been validated by gold standard oxidative stress assays. QUEST MRI has high translational potential because it does not use an exogenous contrast agent and requires only standard MRI equipment. Summarizing, QUEST MRI is a powerful non-invasive approach with unprecedented potential for (i) bridging antioxidant treatment in animal models and patients, (ii) identifying tissue subregions exhibiting oxidative stress, and (iii) coupling oxidative stress localization with behavioral dysfunction, disease pathology, and genetic vulnerabilities to serve as a marker of susceptibility.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
14
|
Quantitative transcranial sonography in Wilson's disease and healthy controls: Cut-off values and functional correlates. J Neurol Sci 2017; 385:69-74. [PMID: 29406916 DOI: 10.1016/j.jns.2017.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022]
Abstract
To compare transcranial sonography (TCS) findings in patients with predominantly neurological Wilson's disease (WD) to those from controls, and to correlate TCS data with the clinical profile of WD. Patients with WD (n=40/f=18) and healthy, matched controls (n=49/f=20) were assessed in terms of TCS, serum copper and iron parameters, and clinical scales, such as the Unified Wilson's Disease Rating Scale (UWDRS), Addenbrooke's Cognitive Examination-Revised (ACE-R), Mini Mental State Examination (MMSE), and Beck Depression Inventory. Lenticular nuclei and substantia nigra echogenic area cut-off values clearly differentiated WD patients from controls (area under the curve: 95.4% and 79.4%). Substantia nigra echogenic area was significantly larger in male than in female patients (p=0.001). Compared with controls, patients showed hyperechogenicity also in thalami and midbrain tegmentum/tectum; third ventricle width was increased and midbrain axial area was reduced. In the WD group, male gender correlated with substantia nigra echogenic area (r=0.515, p=0.0007) and serum ferritin levels (r=0.479, p=0.002); lenticular nuclei hyperechogenicity correlated with dystonia (r=0.326, p=0.04) and dysarthria (r=0.334, p=0.035); third ventricle width correlated with dystonia (r=0.439 p=0.005), dysarthria (r=0.449, p=0.004), parkinsonism (r=0.527, p<0.001), UWDRS neurological and total scores (both r=0.504, p=0.0009), MMSE (r=-0.496, p=0.001), and ACE-R (r=-0.534, p=0.0004). Lenticular nuclei echogenic area allowed highly accurate discrimination between patients and controls. The gender differences in substantia nigra echogenicity and iron metabolism are of interest in further studies in WD. TCS reflects different dimensions of WD pathology clearly differentiable from healthy controls and correlating with various clinical characteristics of WD.
Collapse
|
15
|
Study on Lesion Assessment of Cerebello-Thalamo-Cortical Network in Wilson's Disease with Diffusion Tensor Imaging. Neural Plast 2017; 2017:7323121. [PMID: 28781902 PMCID: PMC5525080 DOI: 10.1155/2017/7323121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022] Open
Abstract
Wilson's disease (WD) is a genetic disorder of copper metabolism with pathological copper accumulation in the brain and any other tissues. This article aimed to assess lesions in cerebello-thalamo-cortical network with an advanced technique of diffusion tensor imaging (DTI) in WD. 35 WD patients and 30 age- and sex-matched healthy volunteers were recruited to accept diffusion-weighted images with 15 gradient vectors and conventional magnetic resonance imaging (MRI). The DTI parameters, including fractional anisotropy (FA) and mean diffusion (MD), were calculated by diffusion kurtosis estimator software. After registration, patient groups with FA mappings and MD mappings and normal groups were compared with 3dttest and receiver-operating characteristic (ROC) curve analysis, corrected with FDR simulations (p = 0.001, α = 0.05, cluster size = 326). We found that the degree of FA increased in the bilateral head of the caudate nucleus (HCN), lenticular nucleus (LN), ventral thalamus, substantia nigra (SN), red nucleus (RN), right dentate nucleus (DN), and decreased in the mediodorsal thalamus and extensive white matter. The value of MD increased in HCN, LN, SN, RN, and extensive white matter. The technique of DTI provides higher sensitivity and specificity than conventional MRI to detect Wilson's disease. Besides, lesions in the basal ganglia, thalamus, and cerebellum might disconnect the basal ganglia-thalamo-cortical circuits or dentato-rubro-thalamic (DRT) track and disrupt cerebello-thalamo-cortical network finally, which may cause clinical extrapyramidal symptoms.
Collapse
|
16
|
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. Its incidence is higher in China than in western countries. ATP7B is the causative gene and encodes a P-type ATPase, which participates in the synthesis of holoceruloplasmin and copper excretion. Disease-causing variants of ATP7B disrupt the normal structure or function of the enzyme and cause copper deposition in multiple organs, leading to diverse clinical manifestations. Given the variety of presentations, misdiagnosis is not rare. Genetic diagnosis plays an important role and has gradually become a routine test in China. The first Chinese spectrum of disease-causing mutations of ATP7B has been established. As a remediable hereditary disorder, most WD patients have a good prognosis with an early diagnosis and chelation treatment. However, clinical trials are relatively few in China, and most treatments are based on the experience of experts and evidences from other countries. It is necessary to study and develop appropriate regimens specific for Chinese WD patients.
Collapse
Affiliation(s)
- Juan-Juan Xie
- Department of Neurology and Research Center of Neurology in the Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in the Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
17
|
Doganay S, Gumus K, Koc G, Bayram AK, Dogan MS, Arslan D, Gumus H, Gorkem SB, Ciraci S, Serin HI, Coskun A. Magnetic Susceptibility Changes in the Basal Ganglia and Brain Stem of Patients with Wilson's Disease: Evaluation with Quantitative Susceptibility Mapping. Magn Reson Med Sci 2017; 17:73-79. [PMID: 28515413 PMCID: PMC5760236 DOI: 10.2463/mrms.mp.2016-0145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objectives: Wilson’s disease (WD) is characterized with the accumulation of copper in the liver and brain. The objective of this study is to quantitatively measure the susceptibility changes of basal ganglia and brain stem of pediatric patients with neurological WD using quantitative susceptibility mapping (QSM) in comparison to healthy controls. Methods: Eleven patients with neurological WD (mean age 15 ± 3.3 years, range 10–22 years) and 14 age-matched controls were prospectively recruited. Both groups were scanned on a 1.5 Tesla clinical scanner. In addition to T1- and T2-weighted MR images, a 3D multi-echo spoiled gradient echo (GRE) sequence was acquired and QSM images were derived offline. The quantitative measurement of susceptibility of corpus striatum, thalamus of each hemisphere, midbrain, and pons were assessed with the region of interest analysis on the QSM images. The susceptibility values for the patient and control groups were compared using two-sample t-test. Results: One patient with WD had T1 shortening in the bilateral globus pallidus. Another one had hyperintensity in the bilateral putamen, caudate nuclei, and substantia nigra on T2-weighted images. The rest of the patients with WD and all subjects of the control group had no signal abnormalities on conventional MR images. The susceptibility measures of right side of globus pallidus, putamen, thalamus, midbrain, and entire pons were significantly different in patients compared to controls (P < 0.05). Conclusion: QSM method exhibits increased susceptibility differences of basal ganglia and brain stem in patients with WD that have neurologic impairment even if no signal alteration is detected on T1- and T2-weighted MR images.
Collapse
Affiliation(s)
- Selim Doganay
- Pediatric Radiology, Faculty of Medicine, Erciyes University
| | - Kazim Gumus
- Biomedical Imaging Research Center, Erciyes University
| | - Gonca Koc
- Pediatric Radiology, Faculty of Medicine, Erciyes University
| | | | | | - Duran Arslan
- Pediatric Gastroenterology, Faculty of Medicine, Erciyes University
| | - Hakan Gumus
- Pediatric Neurology, Faculty of Medicine, Erciyes University
| | | | - Saliha Ciraci
- Pediatric Radiology, Faculty of Medicine, Erciyes University
| | | | | |
Collapse
|
18
|
|
19
|
Dusek P, Bahn E, Litwin T, Jabłonka-Salach K, Łuciuk A, Huelnhagen T, Madai VI, Dieringer MA, Bulska E, Knauth M, Niendorf T, Sobesky J, Paul F, Schneider SA, Czlonkowska A, Brück W, Wegner C, Wuerfel J. Brain iron accumulation in Wilson disease: apost mortem7 Tesla MRI - histopathological study. Neuropathol Appl Neurobiol 2016; 43:514-532. [DOI: 10.1111/nan.12341] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 12/12/2022]
Affiliation(s)
- P. Dusek
- Institute of Neuroradiology; University Medical Center Göttingen; Göttingen Germany
- Department of Neurology and Center of Clinical Neuroscience; 1 Faculty of Medicine and General University Hospital in Prague; Charles University in Prague; Praha Czech Republic
| | - E. Bahn
- Institute of Neuropathology; University Medical Center Göttingen; Göttingen Germany
| | - T. Litwin
- 2 Department of Neurology; Institute Psychiatry and Neurology; Warsaw Poland
| | - K. Jabłonka-Salach
- Faculty of Chemistry; Biological and Chemical Research Centre; University of Warsaw; Warsaw Poland
| | - A. Łuciuk
- Faculty of Chemistry; Biological and Chemical Research Centre; University of Warsaw; Warsaw Poland
| | - T. Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - V. I. Madai
- Department of Neurology and Center for Stroke Research Berlin (CSB); Charité-Universitätsmedizin; Berlin Germany
| | - M. A. Dieringer
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
- Experimental and Clinical Research Center (ECRC); Charité-Universitätsmedizin and Max Delbrück Center for Molecular Medicine (MDC); Berlin Germany
| | - E. Bulska
- Faculty of Chemistry; Biological and Chemical Research Centre; University of Warsaw; Warsaw Poland
| | - M. Knauth
- Institute of Neuroradiology; University Medical Center Göttingen; Göttingen Germany
| | - T. Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max-Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
- Experimental and Clinical Research Center (ECRC); Charité-Universitätsmedizin and Max Delbrück Center for Molecular Medicine (MDC); Berlin Germany
| | - J. Sobesky
- Department of Neurology and Center for Stroke Research Berlin (CSB); Charité-Universitätsmedizin; Berlin Germany
- Experimental and Clinical Research Center (ECRC); Charité-Universitätsmedizin and Max Delbrück Center for Molecular Medicine (MDC); Berlin Germany
| | - F. Paul
- Experimental and Clinical Research Center (ECRC); Charité-Universitätsmedizin and Max Delbrück Center for Molecular Medicine (MDC); Berlin Germany
- NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center; Department of Neurology; Charité-Universitätsmedizin; Berlin Germany
| | - S. A. Schneider
- Neurology Department; University of Kiel; Kiel Germany
- Department of Neurology; Ludwig-Maximilians-University; Munich Germany
| | - A. Czlonkowska
- 2 Department of Neurology; Institute Psychiatry and Neurology; Warsaw Poland
- Department of Experimental and Clinical Pharmacology; Medical University; Warsaw Poland
| | - W. Brück
- Institute of Neuropathology; University Medical Center Göttingen; Göttingen Germany
| | - C. Wegner
- Institute of Neuropathology; University Medical Center Göttingen; Göttingen Germany
| | - J. Wuerfel
- Institute of Neuroradiology; University Medical Center Göttingen; Göttingen Germany
- NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center; Department of Neurology; Charité-Universitätsmedizin; Berlin Germany
- Medical Imaging Analysis Center AG; Basel Switzerland
| |
Collapse
|