1
|
Duan Y, Hao Y, Feng H, Shu J, He Y. Research progress on Haemophilus parasuis vaccines. Front Vet Sci 2025; 12:1492144. [PMID: 40007746 PMCID: PMC11851532 DOI: 10.3389/fvets.2025.1492144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Haemophilus parasuis (HPS) is the causative agent of porcine Glässer's disease, which has become prevalent in China in recent years. It is characterized by fibrinous polyserositis, arthritis, and meningitis, but often shows mixed infection with other upper respiratory tract pathogens, causing heavy economic losses to the pig industry. Vaccination is an important means to prevent and control HPS infection, and the currently available vaccines are mainly the inactivated type or subunit vaccines containing immunogenic HPS proteins. This study reviews recent advances in HPS vaccines, analyzes the relative effectiveness of the components of subunit vaccines and discusses the advantages and disadvantages of each vaccine type. The goal is to provide insights for the development of more effective vaccines against Haemophilus parasuis infections in pigs.
Collapse
|
2
|
Xiao J, Wang Y, Wu D, Song Y, Cai X, Chen H, Zhou H, Xu X. A marker-free genetic manipulation method for Glaesserella parasuis strains developed by alternately culturing transformants at 37°C and 30°C. BMC Biotechnol 2024; 24:60. [PMID: 39227838 PMCID: PMC11373133 DOI: 10.1186/s12896-024-00887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Glaesserella parasuis (G. parasuis) is the causative agent of Glässer's disease, which causes significant economic losses in the swine industry. However, research on the pathogenesis of G. parasuis has been hampered by the lack of a simple and efficient marker-free knockout system. RESULTS In this study, a marker-free knockout system was developed for G. parasuis using a temperature-sensitive vector. By alternating the incubation of transformants at 30°C and 37°C, we optimized the screening process for this system. The system was successfully applied to knockout the KanR cassette from JS0135ΔnanH::KanR, achieving a knockout efficiency of 90% in the final round of screening. To confirm that temperature variation was a key factor, we proceeded with knocking out the nanH and apd genes in the CF7066 strain. The knockout efficiency reached up to 100%, with the shortest screening time being only four days. The knockout of the nanH gene resulted in a significant reduction in the growth vitality of the strains, while the knockout of the apd gene led to an approximate 56% improvement in the adhesion rate. Additionally, we observed that the expression of recombinant genes in transformants was higher at 30℃ than at 37℃, with the recC gene being upregulated approximately 7-fold. In contrast, there was almost no difference in the expression of recombinant genes between 30℃ and 37℃ in the wild-type strains. This discrepancy was likely due to an elevated copy number of target plasmids at 30℃, which may have resulted in the enhanced expression of recombinant genes. CONCLUSIONS In conclusion, this newly developed gene knockout system for G. parasuis presents a valuable tool for advancing research on this organism.
Collapse
Affiliation(s)
- Jing Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuxin Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongfang Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Yuping Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
3
|
Tang X, Yang Z, Dai K, Liu G, Chang YF, Tang X, Wang K, Zhang Y, Hu B, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Lang Y, Han X, Huang Y, Wen X, Wen Y. The molecular diversity of transcriptional factor TfoX is a determinant in natural transformation in Glaesserella parasuis. Front Microbiol 2022; 13:948633. [PMID: 35966685 PMCID: PMC9372613 DOI: 10.3389/fmicb.2022.948633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Natural transformation is a mechanism by which a particular bacterial species takes up foreign DNA and integrates it into its genome. The swine pathogen Glaesserella parasuis (G. parasuis) is a naturally transformable bacterium. The regulation of competence, however, is not fully understood. In this study, the natural transformability of 99 strains was investigated. Only 44% of the strains were transformable under laboratory conditions. Through a high-resolution melting curve and phylogenetic analysis, we found that genetic differences in the core regulator of natural transformation, the tfoX gene, leads to two distinct natural transformation phenotypes. In the absence of the tfoX gene, the highly transformable strain SC1401 lost its natural transformability. In addition, when the SC1401 tfoX gene was replaced by the tfoX of SH0165, which has no natural transformability, competence was also lost. These results suggest that TfoX is a core regulator of natural transformation in G. parasuis, and that differences in tfoX can be used as a molecular indicator of natural transformability. Transcriptomic and proteomic analyses of the SC1401 wildtype strain, and a tfoX gene deletion strain showed that differential gene expression and protein synthesis is mainly centered on pathways related to glucose metabolism. The results suggest that tfoX may mediate natural transformation by regulating the metabolism of carbon sources. Our study provides evidence that tfoX plays an important role in the natural transformation of G. parasuis.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Geyan Liu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xinwei Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Wang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bangdi Hu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yifei Lang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yiping Wen,
| |
Collapse
|
4
|
Generation of markerless and multiple-gene knockout in Glaesserella parasuis based on natural transformation and Flp recombinase. Appl Microbiol Biotechnol 2022; 106:5167-5178. [DOI: 10.1007/s00253-022-11994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/02/2022]
|
5
|
PK-PD Modeling and Optimal Dosing Regimen of Acetylkitasamycin against Streptococcus suis in Piglets. Antibiotics (Basel) 2022; 11:antibiotics11020283. [PMID: 35203885 PMCID: PMC8868236 DOI: 10.3390/antibiotics11020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Streptococcus suis (S. suis) causes severe respiratory diseases in pigs and is also an important pathogen causing hidden dangers to public health and safety. Acetylkitasamycin is a new macrolide agent that has shown good activity to Gram-positive cocci such as Streptococcus. The purpose of this study was to perform pharmacokinetic–pharmacodynamic (PK-PD) modeling to formulate a dosing regimen of acetylkitasamycin for treatment of S. suis and to decrease the emergence of acetylkitasamycin-resistant S. suis. The minimal inhibitory concentration (MIC) of 110 S. suis isolates was determined by broth micro dilution method. The MIC50 of the 55 sensitive S. suis isolates was 1.21 μg/mL. The strain HB1607 with MIC close to MIC50 and high pathogenicity was used for the PK-PD experiments. The MIC and MBC of HB1607 in both MH broth and pulmonary epithelial lining fluid (PELF) was 1 and 2 μg/mL, respectively. The liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was used to determine the concentration change of acetylkitasamycin in piglet plasma and PELF after intragastric administration of a single dose of 50 mg/kg b.w. acetylkitasamycin. The PK parameters were calculated by WinNolin software. The PK data showed that the maximum concentration (Cmax), peak time (Tmax), and area under the concentration–time curve (AUC) were 9.84 ± 0.39 μg/mL, 4.27 ± 0.19 h and 248.58 ± 21.17 h·μg/mL, respectively. Integration of the in vivo PK data and ex vivo PD data, an inhibition sigmoid Emax equation was established. The dosing regimen of acetylkitasamycin for the treatment S. suis infection established as 33.12 mg/kg b.w. every 12 h for 3 days. This study provided a reasonable dosing regimen for a new drug used in clinical treatment, which can effectively be used to treat S. suis infection and slow down the generation of drug resistance.
Collapse
|
6
|
Exploration of Clinical Breakpoint of Danofloxacin for Glaesserella parasuis in Plasma and in PELF. Antibiotics (Basel) 2021; 10:antibiotics10070808. [PMID: 34356730 PMCID: PMC8300709 DOI: 10.3390/antibiotics10070808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
Background: In order to establish the clinical breakpoint (CBP) of danofloxacin against G. parasuis, three cutoff values, including epidemiological cutoff value (ECV), pharmacokinetic-pharmacodynamic (PK-PD) cutoff value (COPD) and clinical cutoff value (COCL), were obtained in the present study. Methods: The ECV was calculated using ECOFFinder base on the MIC distribution of danfloxacin against 347 G. parasuis collected from disease pigs. The COPD was established based on in vivo and ex vivo PK-PD modeling of danofloxacin both in plasma and pulmonary epithelial lining fluid (PELF) using Hill formula and Monte Carlo analysis. The COCL was established based on the relationship between the possibility of cure (POC) and MIC in the clinical trials using the "WindoW" approach, nonlinear regression and CART analysis. Results: The MIC50 and MIC90 of danofloxacin against 347 G. parasuis were 2 μg/mL and 8 μg/mL, respectively. The ECV value was set to 8 μg/mL using ECOFFinder. Concentration-time curves of danofloxacin were fitted with a two-compartment PK model. The PK parameters of the maximum concentration (Cmax) and area under concentration-time curves (AUC) in PELF were 3.67 ± 0.25 μg/mL and 24.28 ± 2.70 h·μg/mL, higher than those in plasma (0.67 ± 0.01 μg/mL and 4.47 ± 0.51 h·μg/mL). The peak time (Tmax) in plasma was 0.23 ± 0.07 h, shorter than that in PELF (1.61 ± 0.15 h). The COPD in plasma and PELF were 0.125 μg/mL and 0.5 μg/mL, respectively. The COCL calculated by WindoW approach, nonlinear regression and CART analysis were 0.125-4 μg/mL, 0.428 μg/mL and 0.56 μg/mL, respectively. The 0.5 μg/mL was selected as eligible COCL. The ECV is much higher than the COPD and COCL, and the clinical breakpoint based on data in plasma was largely different from that of PELF. Conclusions: Our study firstly established three cutoff values of danofloxacin against G. parasuis. It suggested that non-wild-type danofloxacin-resistant G. parasuis may lead to ineffective treatment by danofloxacin.
Collapse
|
7
|
Huang L, Liu M, Zhu D, Xie L, Huang M, Xiang C, Biville F, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Wang M, Cheng A. Natural Transformation of Riemerella columbina and Its Determinants. Front Microbiol 2021; 12:634895. [PMID: 33746928 PMCID: PMC7965970 DOI: 10.3389/fmicb.2021.634895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
In a previous study, it was shown that Riemerella anatipestifer, a member of Flavobacteriaceae, is naturally competent. However, whether natural competence is universal in Flavobacteriaceae remains unknown. In this study, it was shown for the first time that Riemerella columbina was naturally competent in the laboratory condition; however, Flavobacterium johnsoniae was not naturally competent under the same conditions. The competence of R. columbina was maintained throughout the growth phases, and the transformation frequency was highest during the logarithmic phase. A competition assay revealed that R. columbina preferentially took up its own genomic DNA over heterologous DNA. The natural transformation frequency of R. columbina was significantly increased in GCB medium without peptone or phosphate. Furthermore, natural transformation of R. columbina was inhibited by 0.5 mM EDTA, but could be restored by the addition of CaCl2, MgCl2, ZnCl2, and MnCl2, suggesting that these divalent cations promote the natural transformation of R. columbina. Overall, this study revealed that natural competence is not universal in Flavobacteriaceae members and triggering of competence differs from species to species.
Collapse
Affiliation(s)
- Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Li Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Chen Xiang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Francis Biville
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
8
|
Dai K, Yang Z, Ma X, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Xia J, Yan Q, Han X, Ma X, Wen X, Wen Y. Deletion of Polyamine Transport Protein PotD Exacerbates Virulence in Glaesserella (Haemophilus) parasuis in the Form of Non-biofilm-generated Bacteria in a Murine Acute Infection Model. Virulence 2021; 12:520-546. [PMID: 33525975 PMCID: PMC7872090 DOI: 10.1080/21505594.2021.1878673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Polyamines are small, polycationic molecules with a hydrocarbon backbone and multiple amino groups required for optimal cell growth. The potD gene, belonging to the ABC (ATP-binding cassette) transport system potABCD, encodes the bacterial substrate-binding subunit of the polyamine transport system, playing a pivotal role in bacterial metabolism and growth. The swine pathogen Glaesserella parasuis possesses an intact pot operon, and the studies presented here mainly examined the involvement of PotD in Glaesserella pathogenesis. A potD-deficient mutant was constructed using a virulent G. parasuis strain SC1401 by natural transformation; immuno-electron microscopy was used to identify the subcellular location of native PotD protein; an electron microscope was adopted to inspect biofilm and bacterial morphology; immunofluorescence technique was employed to study cellular adhesion, the levels of inflammation and apoptosis. The TSA++-pre-cultured mutant strain showed a significantly reduced adhesion capacity to PK-15 and MLE-12 cells. Likewise, we also found attenuation in virulence using murine models focusing on the clinical sign, H&E, and IFA for inflammation and apoptosis. However, when the mutant was grown in TSB++, virulence recovered to normal levels, along with a high level of radical oxygen species formation in the host. The expression of PotD could actively stimulate the production of ROS in Raw 264.7. Our data suggested that PotD from G. parasuis has a high binding potential to polyamine, and is essential for the full bacterial virulence within mouse models. However, the virulence of the potD mutant is highly dependent on its TSA++ culture conditions rather than on biofilm-formation.
Collapse
Affiliation(s)
- Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Xiaoyu Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University , NY, USA
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Jing Xia
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Xiaoping Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| |
Collapse
|
9
|
Abstract
This paper reflects on the meanings of 'post-AIDS' in the Global North and South. I bring together contemporary arguments to suggest that the notion of 'post-AIDS' is, at best, misplaced, not least because its starting point remains a biotechnical one. Drawing on aspects of the sub-Saharan African experience, this essay suggests that, despite significant shifts in access to antiretroviral therapy (ART), HIV continues to be fundamentally shaped by economic determinants and social and cultural practices. In this essay, I question the certainty of the discourse of (Western biomedical) 'positive progress' (Johnson et al. 2015), which underpins the 'post-AIDS' narrative, and suggest that living with HIV and AIDS in our contemporary global context is a life lived with ongoing complexity, stigma and chronicity. I suggest that HIV in the Global North shares many characteristics with HIV in the Global South yet differs in significant ways, not least in the fact that a resource-rich context generates an environment where health and social care support is possible, and, mostly, usual. In both contexts, however, the experience of living with a highly stigmatized illness with no cure in both the Global South and North suggests that this is a point of shared experience.
Collapse
Affiliation(s)
- Liz Walker
- Faculty of Health Sciences, University of Hull, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
10
|
Górski A, Międzybrodzki R, Łobocka M, Głowacka-Rutkowska A, Bednarek A, Borysowski J, Jończyk-Matysiak E, Łusiak-Szelachowska M, Weber-Dąbrowska B, Bagińska N, Letkiewicz S, Dąbrowska K, Scheres J. Phage Therapy: What Have We Learned? Viruses 2018; 10:E288. [PMID: 29843391 PMCID: PMC6024844 DOI: 10.3390/v10060288] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
In this article we explain how current events in the field of phage therapy may positively influence its future development. We discuss the shift in position of the authorities, academia, media, non-governmental organizations, regulatory agencies, patients, and doctors which could enable further advances in the research and application of the therapy. In addition, we discuss methods to obtain optimal phage preparations and suggest the potential of novel applications of phage therapy extending beyond its anti-bacterial action.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Aleksandra Głowacka-Rutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Agnieszka Bednarek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Medical Sciences Institute, Katowice School of Economics, Harcerzy Września Street 3, 40-659 Katowice, Poland.
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Research and Development Center, Regional Specialized Hospital, Kamieńskiego 73a, 51-124 Wrocław, Poland.
| | - Jacques Scheres
- National Institute of Public Health NIZP, Chocimska Street 24, 00-971 Warsaw, Poland.
| |
Collapse
|
11
|
Dai K, He L, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401. Front Cell Infect Microbiol 2018; 8:32. [PMID: 29473023 PMCID: PMC5809987 DOI: 10.3389/fcimb.2018.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 11/13/2022] Open
Abstract
Haemophilus parasuis causes Glässer's disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401.
Collapse
Affiliation(s)
- Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Dai K, Wen X, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen Y. A streptomycin resistance marker in H. parasuis based on site-directed mutations in rpsL gene to perform unmarked in-frame mutations and to verify natural transformation. PeerJ 2018; 6:e4253. [PMID: 29340249 PMCID: PMC5767333 DOI: 10.7717/peerj.4253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Haemophilus parasuis is a member of the family Pasteurellaceae and a major causative agent of Glässer’s disease. This bacterium is normally a benign swine commensal but may become a deadly pathogen upon penetration into multiple tissues, contributing to severe lesions in swine. We have established a successive natural transformation-based markerless mutation system in this species. However, the two-step mutation system requires screening of natural competent cells, and cannot delete genes which regulate natural competence per se. In this study, we successfully obtained streptomycin-resistant derivatives from H. parasuis wild type strain SC1401 by using ethyl methane sulfonate (EMS, CH3SO2OC2H5). Upon sequencing and site-directed mutations, we uncovered that the EMS-induced point mutation in rpsL at codon 43rd (AAA → AGA; K43R) or at 88th (AAA → AGA; K88R) confers a much higher streptomycin resistance than clinical isolates. We have applied the streptomycin resistance marker as a positive selection marker to perform homologous recombination through conjugation and successfully generated a double unmarked in-frame targeted mutant 1401D88△tfox△arcA. Combined with a natural transformation-based knockout system and this genetic technique, multiple deletion mutants or attenuated strains of H. parasuis can be easily constructed. Moreover, the mutant genetic marker rpsL and streptomycin resistant phenotypes can serve as an effective tool to select naturally competent strains, and to verify natural transformation quantitatively.
Collapse
Affiliation(s)
- Ke Dai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Li Y, Cao S, Zhang L, Lau GW, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Huang Y, Wen X. A TolC-Like Protein of Actinobacillus pleuropneumoniae Is Involved in Antibiotic Resistance and Biofilm Formation. Front Microbiol 2016; 7:1618. [PMID: 27822201 PMCID: PMC5075564 DOI: 10.3389/fmicb.2016.01618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, a significant disease that causes serious economic losses to the swine industry worldwide. Persistent infections caused by bacterial biofilms are recalcitrant to treat because of the particular drug resistance of biofilm-dwelling cells. TolC, a key component of multidrug efflux pumps, are responsible for multidrug resistance (MDR) in many Gram-negative bacteria. In this study, we identified two TolC-like proteins, TolC1 and TolC2, in A. pleuropneumoniae. Deletion of tolC1, but not tolC2, caused a significant reduction in biofilm formation, as well as increased drug sensitivity of both planktonic and biofilm cells. The genetic-complementation of the tolC1 mutation restored the competent biofilm and drug resistance. Besides, biofilm formation was inhibited and drug sensitivity was increased by the addition of phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux pump inhibitor (EPI), suggesting a role for EPI in antibacterial strategies toward drug tolerance of A. pleuropneumoniae. Taken together, TolC1 is required for biofilm formation and is a part of the MDR machinery of both planktonic and biofilm cells, which could supplement therapeutic strategies for resistant bacteria and biofilm-related infections of A. pleuropneumoniae clinical isolate SC1516.
Collapse
Affiliation(s)
- Ying Li
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Luhua Zhang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Department of Pathobiology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Yiping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qigui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yong Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xintian Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| |
Collapse
|
14
|
Ding L, Wen X, He L, Yan X, Wen Y, Cao S, Huang X, Wu R, Wen Y. The arcA gene contributes to the serum resistance and virulence of Haemophilus parasuis serovar 13 clinical strain EP3. Vet Microbiol 2016; 196:67-71. [PMID: 27939158 DOI: 10.1016/j.vetmic.2016.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/25/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
Abstract
As a global transcriptional factor, ArcA regulates the expression of hundreds of genes involved in aerobic and anaerobic metabolism. Here we deleted arcA gene and investigated the biological characteristics of arcA deletion mutant (ΔarcA) in Haemophilus parasuis (H. parasuis) serovar 13 clinical strain EP3. Results indicated that deletion of arcA impaired growth of EP3 strain under anaerobic condition, and reduced virulence of EP3 strain in mice. Additionally, the ΔarcA strain showed greater sensitivity in porcine serum and produced less biofilm mass than the EP3 strain. Taken together, these findings suggested that the arcA gene may be involved in pathogenesis in Haemophilus parasuis.
Collapse
Affiliation(s)
- Lingqiang Ding
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuefeng Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yongping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
15
|
Li J, Yuan X, Xu L, Kang L, Jiang J, Wang Y. Efficient construction of Haemophilus parasuis mutants based on natural transformation. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:281-286. [PMID: 27733782 PMCID: PMC5052879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/06/2016] [Indexed: 06/06/2023]
Abstract
Studies on virulence factors and pathogenecity of Haemophilus parasuis have long been hindered by a lack of a consistent system for genetic manipulation. In this study, competence was induced by transferring H. parasuis from rich medium to starvation medium media-IV (M-IV) and iscR gene deficient mutants of H. parasuis were generated efficiently. Transformation frequency varied from 4.1 × 10-5 to 1.1 × 10-8 when using circular plasmid, and increased to about 2- to 31-fold when transformed using linearized plasmid. Allele replacement occurred efficiently in 6 strains, which are transformable using both circular and linearized pTRU, but not in another 2 strains which could only be transformed using linearized plasmid. The iscR mutants were stable for at least 20 passages in vitro. Haemophilus parasuis strains vary extensively in natural transformation efficiency and the method established here allows for transformation of a larger spectrum of strains with an easily accessed plasmid. This provides important tools for genetic manipulation of H. parasuis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yicheng Wang
- Address all correspondence to Professor Yicheng Wang; telephone: 86 571 8640 4121; fax: 86 571 8640 0836; e-mail:
| |
Collapse
|
16
|
Complete Genome Sequence of Highly Virulent Haemophilus parasuis Serotype 11 Strain SC1401. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00628-16. [PMID: 27445368 PMCID: PMC4956441 DOI: 10.1128/genomea.00628-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemophilus parasuis, a normal Gram-negative bacterium, may cause Glässer’s disease and pneumonia in pigs. This study aims to identify the genes related to natural competence of the serotype 11 strain SC1401, which frequently shows competence and high pathogenicity. SC1401 shows many differences from strains without natural competence within the molecular basis. We performed complete genome sequencing together with restriction modification system analysis to lay the foundation for later study.
Collapse
|
17
|
HtrA Is Important for Stress Resistance and Virulence in Haemophilus parasuis. Infect Immun 2016; 84:2209-2219. [PMID: 27217419 PMCID: PMC4962635 DOI: 10.1128/iai.00147-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Haemophilus parasuis is an opportunistic pathogen that causes Glässer's disease in swine, with polyserositis, meningitis, and arthritis. The high-temperature requirement A (HtrA)-like protease, which is involved in protein quality control, has been reported to be a virulence factor in many pathogens. In this study, we showed that HtrA of H. parasuis (HpHtrA) exhibited both chaperone and protease activities. Finally, nickel import ATP-binding protein (NikE), periplasmic dipeptide transport protein (DppA), and outer membrane protein A (OmpA) were identified as proteolytic substrates for HpHtrA. The protease activity reached its maximum at 40°C in a time-dependent manner. Disruption of the htrA gene from strain SC1401 affected tolerance to temperature stress and resistance to complement-mediated killing. Furthermore, increased autoagglutination and biofilm formation were detected in the htrA mutant. In addition, the htrA mutant was significantly attenuated in virulence in the murine model of infection. Together, these data demonstrate that HpHtrA plays an important role in the virulence of H. parasuis.
Collapse
|