1
|
Augspach A, Drake KD, Roma L, Qian E, Lee SR, Clarke D, Kumar S, Jaquet M, Gallon J, Bolis M, Triscott J, Galván JA, Chen Y, Thalmann GN, Kruithof-de Julio M, Theurillat JPP, Wuchty S, Gerstein M, Piscuoglio S, Kanadia RN, Rubin MA. Minor intron splicing is critical for survival of lethal prostate cancer. Mol Cell 2023; 83:1983-2002.e11. [PMID: 37295433 PMCID: PMC10637423 DOI: 10.1016/j.molcel.2023.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.
Collapse
Affiliation(s)
- Anke Augspach
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Kyle D Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Luca Roma
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Ellen Qian
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Se Ri Lee
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Sushant Kumar
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Muriel Jaquet
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - John Gallon
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Computational Oncology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156 Milano, Italy
| | - Joanna Triscott
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - José A Galván
- Institute of Pathology, University of Bern, Bern 3008, Switzerland
| | - Yu Chen
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - George N Thalmann
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, FL 33136, USA; Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Mark Gerstein
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland.
| |
Collapse
|
2
|
Minor Intron Splicing from Basic Science to Disease. Int J Mol Sci 2021; 22:ijms22116062. [PMID: 34199764 PMCID: PMC8199999 DOI: 10.3390/ijms22116062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Pre-mRNA splicing is an essential step in gene expression and is catalyzed by two machineries in eukaryotes: the major (U2 type) and minor (U12 type) spliceosomes. While the majority of introns in humans are U2 type, less than 0.4% are U12 type, also known as minor introns (mi-INTs), and require a specialized spliceosome composed of U11, U12, U4atac, U5, and U6atac snRNPs. The high evolutionary conservation and apparent splicing inefficiency of U12 introns have set them apart from their major counterparts and led to speculations on the purpose for their existence. However, recent studies challenged the simple concept of mi-INTs splicing inefficiency due to low abundance of their spliceosome and confirmed their regulatory role in alternative splicing, significantly impacting the expression of their host genes. Additionally, a growing list of minor spliceosome-associated diseases with tissue-specific pathologies affirmed the importance of minor splicing as a key regulatory pathway, which when deregulated could lead to tissue-specific pathologies due to specific alterations in the expression of some minor-intron-containing genes. Consequently, uncovering how mi-INTs splicing is regulated in a tissue-specific manner would allow for better understanding of disease pathogenesis and pave the way for novel therapies, which we highlight in this review.
Collapse
|
3
|
Fischer D, Nordhausen K, Oja H. On linear dimension reduction based on diagonalization of scatter matrices for bioinformatics downstream analyses. Heliyon 2021; 6:e05732. [PMID: 33385080 PMCID: PMC7770551 DOI: 10.1016/j.heliyon.2020.e05732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/01/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Dimension reduction is often a preliminary step in the analysis of data sets with a large number of variables. Most classical, both supervised and unsupervised, dimension reduction methods such as principal component analysis (PCA), independent component analysis (ICA) or sliced inverse regression (SIR) can be formulated using one, two or several different scatter matrix functionals. Scatter matrices can be seen as different measures of multivariate dispersion and might highlight different features of the data and when compared might reveal interesting structures. Such analysis then searches for a projection onto an interesting (signal) part of the data, and it is also important to know the correct dimension of the signal subspace. These approaches usually make either no model assumptions or work in wide classes of semiparametric models. Theoretical results in the literature are however limited to the case where the sample size exceeds the number of variables which is hardly ever true for data sets encountered in bioinformatics. In this paper, we briefly review the relevant literature and explore if the dimension reduction tools can be used to find relevant and interesting subspaces for small-n-large-p data sets. We illustrate the methods with a microarray dataset of prostate cancer patients and healthy controls.
Collapse
Affiliation(s)
- Daniel Fischer
- Natural Resources Institute Finland (Luke), Applied Statistical Methods, Myllytie 1, 31600 Jokionen, Finland
| | - Klaus Nordhausen
- CSTAT - Computational Statistics, Institute of Statistics & Mathematical Methods in Economics, Vienna University of Technology, Wiedner Hauptstraße 7, A-1040 Vienna, Austria
| | - Hannu Oja
- Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
| |
Collapse
|
4
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
5
|
The Glucose-Regulated MiR-483-3p Influences Key Signaling Pathways in Cancer. Cancers (Basel) 2018; 10:cancers10060181. [PMID: 29867024 PMCID: PMC6025222 DOI: 10.3390/cancers10060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
The hsa-mir-483 gene, located within the IGF2 locus, transcribes for two mature microRNAs, miR-483-5p and miR-483-3p. This gene, whose regulation is mediated by the the CTNNB1/USF1 complex, shows an independent expression from its host gene IGF2. The miR-483-3p affects the Wnt/β-catenin, the TGF-β, and the TP53 signaling pathways by targeting several genes as CTNNB1, SMAD4, IGF1, and BBC3. Accordingly, miR-483-3p is associated with various tissues specific physiological properties as insulin and melanin production, as well as with cellular physiological functions such as wounding, differentiation, proliferation, and survival. Deregulation of miR-483-3p is observed in different types of cancer, and its overexpression can inhibit the pro-apoptotic pathway induced by the TP53 target effectors. As a result, the oncogenic characteristics of miR-483-3p are linked to the effect of some of the most relevant cancer-related genes, TP53 and CTNNB1, as well as to one of the most important cancer hallmark: the aberrant glucose metabolism of tumor cells. In this review, we summarize the recent findings regarding the miR-483-3p, to elucidate its functional role in physiological and pathological contexts, focusing overall on its involvement in cancer and in the TP53 pathway.
Collapse
|
6
|
Zhou W, Yang W, Ma J, Zhang H, Li Z, Zhang L, Liu J, Han Z, Wang H, Hong L. Role of miR-483 in digestive tract cancers: from basic research to clinical value. J Cancer 2018; 9:407-414. [PMID: 29344287 PMCID: PMC5771348 DOI: 10.7150/jca.21394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Digestive tract cancers (DTCs) is the most common malignant tumors in the world. Despite surgery and medical technology have witnessed the increasing development and sharp advancement in the past decade, DTCs remain a critical concern with high morbidity and mortality. Since a class of small noncoding RNAs termed miRNAs were identified several years ago, increasing studies have attempted to illustrate the relationship between the specific miRNAs dysregulated expression levels and the diseases phenotypic changes. For example, microRNA-483 (miR-483) aberrant expression plays a pivotal part in tumor biology in a variety of human cancer, including DTCs. In this review, we focus on the present key findings from recent profiling studies, discuss the use of miR-483 as a novel biomarker for DTCs. At the same time, we emphasize the significant diversities and technical difficulties must be overcome before clinically relevant signatures arose. It is believed that this might provide researchers an insight into the molecular targeting cancer treatment.
Collapse
Affiliation(s)
- Wei Zhou
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wanli Yang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jiaojiao Ma
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hongwei Zhang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zeng Li
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lei Zhang
- Department of General Surgery, NO.406 Hospital, Dalian 116041, Liaoning Province, China
| | - Jinqiang Liu
- Xinyang Cadres Sanatorium of Wuhan Military Logistics Base, Xinyang 464000, Henan Province, China
| | - Zhenyu Han
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hu Wang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Liu Hong
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|