1
|
Song W, Li Y, Yao Y, Sun S, Guan X, Wang B. Systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for lung cancer. BMC Cancer 2024; 24:680. [PMID: 38834983 DOI: 10.1186/s12885-024-12449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Drug repurposing provides a cost-effective approach to address the need for lung cancer prevention and therapeutics. We aimed to identify actionable druggable targets using Mendelian randomization (MR). METHODS Summary-level data of gene expression quantitative trait loci (eQTLs) were sourced from the eQTLGen resource. We procured genetic associations with lung cancer and its subtypes from the TRICL, ILCCO studies (discovery) and the FinnGen study (replication). We implemented Summary-data-based Mendelian Randomization analysis to identify potential therapeutic targets for lung cancer. Colocalization analysis was further conducted to assess whether the identified signal pairs shared a causal genetic variant. FINDINGS In the main analysis dataset, we identified 55 genes that demonstrate a causal relationship with lung cancer and its subtypes. However, in the replication cohort, only three genes were found to have such a causal association with lung cancer and its subtypes, and of these, HYKK (also known as AGPHD1) was consistently present in both the primary analysis dataset and the replication cohort. Following HEIDI tests and colocalization analyses, it was revealed that HYKK (AGPHD1) is associated with an increased risk of squamous cell carcinoma of the lung, with an odds ratio and confidence interval of OR = 1.28,95%CI = 1.24 to 1.33. INTERPRETATION We have found that the HYKK (AGPHD1) gene is associated with an increased risk of squamous cell carcinoma of the lung, suggesting that this gene may represent a potential therapeutic target for both the prevention and treatment of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Wenfu Song
- Department of Hematology and Oncology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Yingying Li
- Department of Hematology and Oncology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Yaxuan Yao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Shiling Sun
- Department of Hematology and Oncology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China.
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China.
| | - Xutao Guan
- Department of Hematology and Oncology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Bing Wang
- Department of Hematology and Oncology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| |
Collapse
|
2
|
Bai Y, Zheng J, Cheng L, Liu Q, Zhao G, Li J, Gu Y, Xu W, Wang M, Wei Q, Zhang R. Potentially functional genetic variants of VAV2 and PSMA4 in the immune-activation pathway and non-small cell lung cancer survival. J Gene Med 2022; 24:e3447. [PMID: 36039727 DOI: 10.1002/jgm.3447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Lung cancer ranks the highest mortality among cancers, represented by a low 5-year survival rate. The function of the immune system has a profound influence on the development and progression of lung cancer. Thus genetic variants of the immune-related genes may serve as potential predictors of non-small cell lung cancer (NSCLC) survival. METHODS In the present study, we conducted a two-stage survival analysis in 1,531 NSCLC patients and assessed the associations between genetic variants in the immune-activation gene-set and overall survival (OS) of NSCLC. The validated variants were further subjected to functional annotation and in vitro experiments. RESULTS We identified 25 SNPs spanning 6 loci associated with NSCLC OS after multiple-testing corrections in all datasets, in which two variants, PSMA4 rs12901682 A>C and VAV2 rs12002767 C>T were shown to potentially affect lung cancer OS by cis-regulating the expression of the corresponding genes [(HR (95% CI) = 0.76 (0.65-0.89) and 1.36 (1.12-1.65), P=4.29E-04 and 0.002, respectively)]. CONCLUSION Our findings provide new insights into the role of genetic variants in the immune-activation pathway genes in lung cancer progression.
Collapse
Affiliation(s)
- Yushun Bai
- School of Public Health|Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| | - Ji Zheng
- School of Public Health|Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Genming Zhao
- School of Public Health|Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jingrao Li
- School of Public Health|Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Yanzi Gu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Wanghong Xu
- School of Public Health|Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Ruoxin Zhang
- School of Public Health|Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| |
Collapse
|
3
|
Association between genetic polymorphisms and osteonecrosis in steroid treatment populations: a detailed stratified and dose-response meta-analysis. Biosci Rep 2019; 39:BSR20190024. [PMID: 30996113 PMCID: PMC6522878 DOI: 10.1042/bsr20190024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/03/2023] Open
Abstract
Steroid treatment has become recognized as an important risk factor for avascular osteonecrosis of the femoral head. However, not all patients who receive long-term, high-dose steroids develop osteonecrosis, indicating that there are individual differences in occurrence.We explored the relationship between polymorphisms and steroid-induced osteonecrosis of the femoral head (SONFH) incidence with variables. We used a multilevel mixed-effects logistic regression model, which is an expansion of logistic regression, for each type of steroid, primary disease, drug dose, applied duration, and single-nucleotide polymorphism (SNP). We also conducted a dose-response meta-analysis to analyze the cumulative dosage and SONFH risk in mutation carriers. There were significant correlations between the ABCB1 rs1045642 mutant and SONFH in the prednisone-use and methylprednisolone/prednisone-use populations. The ABCB1 rs2032582 mutant homozygote had a protective effect in the methylprednisolone/prednisolone renal transplant population. For ApoB rs693, mutation increased the incidence of SONFH in prednisone-use and methylprednisolone/prednisolone-use populations and renal transplant patients. For ApoB rs1042031, mutation increased the risk of SONFH in the prednisone-use population. The PAI-1 rs1799768 mutation had a protective effect on the SONFH risk prednisone-use and renal transplant populations. ABCB1 rs1045642 mutations have a protective effect against SONFH, and ApoB rs693 and rs1042031 increase the SONFH risk. Cumulative dosage and treatment duration had little effect on the results. In addition, there was a dose-effect correlation in ABCB1 rs1045642 and rs2032582 mutation carriers.
Collapse
|