1
|
Ghilardi G, Paruzzo L, Svoboda J, Chong EA, Shestov AA, Chen L, Cohen IJ, Gabrielli G, Nasta SD, Porazzi P, Landsburg DJ, Gerson JN, Carter J, Barta SK, Yelton R, Pajarillo R, Patel V, White G, Ballard HJ, Weber E, Napier E, Chong ER, Fraietta JA, Garfall AL, Porter DL, Milone MC, O’Connor R, Schuster SJ, Ruella M. Bendamustine lymphodepletion before axicabtagene ciloleucel is safe and associates with reduced inflammatory cytokines. Blood Adv 2024; 8:653-666. [PMID: 38113468 PMCID: PMC10839610 DOI: 10.1182/bloodadvances.2023011492] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT Lymphodepletion (LD) is an integral component of chimeric antigen receptor T-cell (CART) immunotherapies. In this study, we compared the safety and efficacy of bendamustine (Benda) to standard fludarabine/cyclophosphamide (Flu/Cy) LD before CD19-directed, CD28-costimulated CART axicabtagene ciloleucel (axi-cel) for patients with large B-cell lymphoma (LBCL) and follicular lymphoma (FL). We analyzed 59 patients diagnosed with LBCL (n = 48) and FL (n = 11) consecutively treated with axi-cel at the University of Pennsylvania. We also analyzed serum samples for cytokine levels and metabolomic changes before and after LD. Flu/Cy and Benda demonstrated similar efficacy, with complete remission rates of 51.4% and 50.0% (P = .981), respectively, and similar progression-free and overall survivals. Any-grade cytokine-release syndrome occurred in 91.9% of patients receiving Flu/Cy vs 72.7% of patients receiving Benda (P = .048); any-grade neurotoxicity after Flu/Cy occurred in 45.9% of patients and after Benda in 18.2% of patients (P = .031). In addition, Flu/Cy was associated with a higher incidence of grade ≥3 neutropenia (100% vs 54.5%; P < .001), infections (78.4% vs 27.3%; P < .001), and neutropenic fever (78.4% vs 13.6%; P < .001). These results were confirmed both in patients with LBCL and those with FL. Mechanistically, patients with Flu/Cy had a greater increase in inflammatory cytokines associated with neurotoxicity and reduced levels of metabolites critical for redox balance and biosynthesis. This study suggests that Benda LD may be a safe alternative to Flu/Cy for CD28-based CART CD19-directed immunotherapy with similar efficacy and reduced toxicities. Benda is associated with reduced levels of inflammatory cytokines and increased anabolic metabolites.
Collapse
Affiliation(s)
- Guido Ghilardi
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Luca Paruzzo
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Department of Oncology, University of Turin, Turin, Italy
| | - Jakub Svoboda
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Eise A. Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Alexander A. Shestov
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Linhui Chen
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Ivan J. Cohen
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Giulia Gabrielli
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Sunita D. Nasta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Patrizia Porazzi
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Daniel J. Landsburg
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - James N. Gerson
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Jordan Carter
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Stefan K. Barta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Rebecca Yelton
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Raymone Pajarillo
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Vrutti Patel
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Griffin White
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hatcher J. Ballard
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Weber
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Ellen Napier
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Emeline R. Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Joseph A. Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Alfred L. Garfall
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - David L. Porter
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Michael C. Milone
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roderick O’Connor
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephen J. Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Marco Ruella
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Höving AL, Schmidt KE, Kaltschmidt B, Kaltschmidt C, Knabbe C. The Role of Blood-Derived Factors in Protection and Regeneration of Aged Tissues. Int J Mol Sci 2022; 23:ijms23179626. [PMID: 36077021 PMCID: PMC9455681 DOI: 10.3390/ijms23179626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.
Collapse
Affiliation(s)
- Anna L. Höving
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Kazuko E. Schmidt
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
4
|
Atarod S, Norden J, Bibby LA, Janin A, Ratajczak P, Lendrem C, Pearce KF, Wang XN, O'Reilly S, Van Laar JM, Collin M, Dickinson AM, Crossland RE. Differential MicroRNA Expression Levels in Cutaneous Acute Graft-Versus-Host Disease. Front Immunol 2018; 9:1485. [PMID: 30042760 PMCID: PMC6048189 DOI: 10.3389/fimmu.2018.01485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a curative treatment for numerous hematological malignancies. However, acute graft-versus-host disease (aGvHD) is a major complication affecting 40-70% of all transplant patients, whereby the earliest and most frequent presentation is in the skin. MicroRNAs play a role in varied biological process and have been reported as potential biomarkers for aGvHD. More recently, microRNAs have received added attention as circulatory biomarkers that can be detected in biofluids. In this study, we performed global microRNA expression profiling using a discovery cohort of diagnostic cutaneous aGvHD biopsies (n = 5, stages 1-3) and healthy volunteers (n = 4), in order to identify a signature list of microRNAs that could be used as diagnostic biomarkers for cutaneous aGvHD. Candidate microRNAs (n = 8) were then further investigated in a validation cohort of post-HSCT skin biopsies (n = 17), pre-HSCT skin biopsies (n = 6) and normal controls (n = 6) for their association with aGvHD. Expression of let-7c (p = 0.014), miR-503-5p (p = 0.003), miR-365a-3p (p = 0.02), miR-34a-5p (p < 0.001) and miR-34a-3p (p = 0.006) were significantly differentially expressed between groups and significantly associated with survival outcome in post-HSCT patients (miR-503-5p ROC AUC = 0.83 p = 0.021, Log Rank p = 0.003; miR-34a-3p ROC AUC = 0.93, p = 0.003, Log Rank p = 0.004). There was no association with relapse. A statistical interaction between miR-34a-3p and miR-503-5p (p = 0.016) was diagnostic for aGvHD. Expression levels of the miR-34a-5p protein target p53 were assessed in the epidermis of the skin, and an inverse correlation was identified (r2 = 0.44, p = 0.039). Expression of the validated candidate microRNAs was also assessed at day 28 post-HSCT in the sera of transplant recipients, in order to investigate their potential as circulatory microRNA biomarkers. Expression of miR-503-5p (p = 0.001), miR-34a-5p (p = 0.005), and miR-34a-3p (p = 0.004) was significantly elevated in the sera of patients who developed aGvHD versus no-aGvHD (n = 30) and miR-503-5p was associated with overall survival (OS) (ROC AUC = 0.80, p = 0.04, Log Rank p = 0.041). In conclusion, this investigation reports that microRNA expression levels in clinical skin biopsies, obtained at the time of cutaneous aGvHD onset, show potential as diagnostic biomarkers for aGvHD and as predictive biomarkers for OS. In addition, the same microRNAs can be detected in the circulation and show predictive association with post-HSCT outcomes.
Collapse
Affiliation(s)
- Sadaf Atarod
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newborn Medicine, Brigham and Women's Hospital, Harvard University, Boston, MA, United States
| | - Jean Norden
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louis A Bibby
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne Janin
- Université Paris Diderot, INSERM, UMR_S1165, Paris, France
| | | | - Clare Lendrem
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kim F Pearce
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xiao-Nong Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jacob M Van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Matthew Collin
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne M Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel E Crossland
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Crossland RE, Norden J, Kralj Juric M, Pearce KF, Lendrem C, Bibby LA, Collin M, Greinix HT, Dickinson AM. Serum and Extracellular Vesicle MicroRNAs miR-423, miR-199, and miR-93* As Biomarkers for Acute Graft-versus-Host Disease. Front Immunol 2017; 8:1446. [PMID: 29176973 PMCID: PMC5686047 DOI: 10.3389/fimmu.2017.01446] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
Acute graft-versus-host disease (aGvHD) is a major cause of adverse outcome in hematopoietic stem cell transplantation (HSCT), with a high incidence (20–50%). A novel, non-invasive diagnostic test to predict for prevalence and severity would enable improved prophylaxis and reduce morbidity. Circulatory microRNAs (miRNAs) miR-423, miR-199, miR-93*, and miR-377 have previously been associated with aGvHD in post-HSCT patient plasma, but validation is lacking and their expression within extracellular vesicles (EVs) has not been explored. This study replicated elevated serum expression of miR-423 (p < 0.001), miR-199 (p = 0.04), miR-93* (p < 0.001), and miR-377 (p = 0.03) in aGvHD, using a prognostic cohort of day 14 (D14) post-HSCT patient samples (n = 81). Expression also associated with disease severity. Further analysis at aGvHD diagnosis in an independent cohort (n = 65) confirmed high miR-423 (p = 0.02), miR-199 (p = 0.007), and miR-93* (p = 0.004) expression at disease onset. Investigation of expression patterns during early HSCT sequential timepoints (pre-HSCT to D28) identified elevated miRNAs at D7 post-HSCT in all transplant patients. In a novel investigation of miRNA expression in serum EVs (n = 15), miR-423 (p = 0.09), miR-199 (p = 0.008), and miR-93* (p = 0.001) levels were lower at D14 in patients who later developed aGvHD, and this was replicated for miR-423 (p = 0.02) and miR-199 (p = 0.04) (n = 47). Comparing serum to circulating EVs, at D14 patients remaining aGvHD-free had higher expression of miR-423 (p = 0.03), miR-199 (p = 0.009), and miR-93* (p = 0.002) in the EV fraction. Results verify the capacity for circulating miR-423, miR-199, and miR-93* as diagnostic and prognostic aGvHD biomarkers. The novel finding of their differential expression in EVs suggests a potential role in aGvHD etiology.
Collapse
Affiliation(s)
- Rachel E Crossland
- Medical School, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jean Norden
- Medical School, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mateja Kralj Juric
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Kim F Pearce
- Medical School, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clare Lendrem
- Medical School, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louis A Bibby
- Medical School, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matthew Collin
- Medical School, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Anne M Dickinson
- Medical School, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|