1
|
Bilkis R, Lake RJ, Fan HY. ATP-Dependent Chromatin Remodeler CSB Couples DNA Repair Pathways to Transcription with Implications for Cockayne Syndrome and Cancer Therapy. Cells 2025; 14:239. [PMID: 39996712 PMCID: PMC11852979 DOI: 10.3390/cells14040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Efficient DNA lesion repair is crucial for cell survival, especially within actively transcribed DNA regions that contain essential genetic information. Additionally, DNA breaks in regions of active transcription are prone to generating insertions and deletions, which are hallmark features of cancer genomes. Cockayne syndrome protein B (CSB) is the sole ATP-dependent chromatin remodeler that is essential for coupling DNA repair pathways with transcription, leading to more efficient DNA repair in regions of active transcription. CSB is best known for its essential function in transcription-coupled nucleotide excision repair (TC-NER), a process that rapidly removes helix-distorting DNA lesions that stall RNA polymerase II, such as those created by chemotherapeutic platinum compounds and UV irradiation. In addition to NER, CSB has also been reported to couple homologous recombination to transcription. Most recently, CSB has also been shown to couple single-strand DNA break repair to transcription. In this review, we will discuss the overlapping and distinct mechanisms by which CSB couples these different DNA repair pathways to transcription. We will also discuss how these CSB functions may account for Cockayne syndrome and the emerging roles of CSB as an innovative target for cancer therapy.
Collapse
Affiliation(s)
- Rabeya Bilkis
- Biomedical Sciences Graduate Program, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA;
| | - Robert J. Lake
- Program in Cell and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA;
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Hua-Ying Fan
- Program in Cell and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA;
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Walker JR, Zhu XD. Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy. Int J Mol Sci 2022; 23:10212. [PMID: 36142121 PMCID: PMC9499456 DOI: 10.3390/ijms231810212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/01/2022] Open
Abstract
A variety of endogenous and exogenous insults are capable of impeding replication fork progression, leading to replication stress. Several SNF2 fork remodelers have been shown to play critical roles in resolving this replication stress, utilizing different pathways dependent upon the nature of the DNA lesion, location on the DNA, and the stage of the cell cycle, to complete DNA replication in a manner preserving genetic integrity. Under certain conditions, however, the attempted repair may lead to additional genetic instability. Cockayne syndrome group B (CSB) protein, a SNF2 chromatin remodeler best known for its role in transcription-coupled nucleotide excision repair, has recently been shown to catalyze fork reversal, a pathway that can provide stability of stalled forks and allow resumption of DNA synthesis without chromosome breakage. Prolonged stalling of replication forks may collapse to give rise to DNA double-strand breaks, which are preferentially repaired by homology-directed recombination. CSB plays a role in repairing collapsed forks by promoting break-induced replication in S phase and early mitosis. In this review, we discuss roles of CSB in regulating the sources of replication stress, replication stress response, as well as the implications of CSB for cancer therapy.
Collapse
Affiliation(s)
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
3
|
CSA Antisense Targeting Enhances Anticancer Drug Sensitivity in Breast Cancer Cells, including the Triple-Negative Subtype. Cancers (Basel) 2022; 14:cancers14071687. [PMID: 35406459 PMCID: PMC8997023 DOI: 10.3390/cancers14071687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer (BC), the most frequent malignancy in woman, shows a high rate of cancer recurrence and resistance to treatment, particularly in Triple-Negative Breast Cancer (TNBC) subtype. Starting from the observation that different subtypes of BC cells, including the TNBC one, display an increased expression of Cockayne Syndrome group A (CSA) protein, which is involved in multiple functions such as DNA repair, transcription and in conferring cell robustness when it is up-regulated, we demonstrated that CSA ablation by AntiSense Oligonucleotides (ASOs) drastically impairs tumorigenicity of BC cells by hampering their survival and proliferative capabilities without affecting normal breast cells. Suppression of CSA does result in lowering the IC50 value of Oxaliplatin and Paclitaxel, two commonly used chemotherapeutic agents in breast cancer treatment, allowing the use of a very low dose of chemotherapeutic that is non-toxic to the normal breast cell line. Finally, CSA ablation restores drug sensitivity in oxaliplatin-resistant cells. Based on these findings, we can conclude that CSA may be a very attractive target for the development of new specific anticancer therapies. Abstract Breast cancer (BC) is the most common cancer with the highest frequency of death among women. BC is highly heterogenic at the genetic, biological, and clinical level. Despite the significant improvements in diagnosis and treatments of BC, the high rate of cancer recurrence and resistance to treatment remains a major challenge in clinical practice. This issue is particularly relevant in Triple-Negative Breast Cancer (TNBC) subtype, for which chemotherapy remains the main standard therapeutic approach. Here, we observed that BC cells, belonging to different subtypes, including the TNBC, display an increased expression of Cockayne Syndrome group A (CSA) protein, which is involved in multiple functions such as DNA repair, transcription, mitochondrial homeostasis, and cell division and that recently was found to confer cell robustness when it is up-regulated. We demonstrated that CSA ablation by AntiSense Oligonucleotides (ASOs) drastically impairs tumorigenicity of BC cells by hampering their survival and proliferative capabilities without damaging normal cells. Moreover, suppression of CSA dramatically sensitizes BC cells to platinum and taxane derivatives, which are commonly used for BC first-line therapy, even at very low doses not harmful to normal cells. Finally, CSA ablation restores drug sensitivity in oxaliplatin-resistant cells. Based on these results, we conclude that CSA might be a very attractive target for the development of more effective anticancer therapies.
Collapse
|
4
|
Neuroblastoma Cells Depend on CSB for Faithful Execution of Cytokinesis and Survival. Int J Mol Sci 2021; 22:ijms221810070. [PMID: 34576232 PMCID: PMC8465547 DOI: 10.3390/ijms221810070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma, the most common extra-cranial solid tumor of early childhood, is one of the major therapeutic challenges in child oncology: it is highly heterogenic at a genetic, biological, and clinical level. The high-risk cases have one of the least favorable outcomes amongst pediatric tumors, and the mortality rate is still high, regardless of the use of intensive multimodality therapies. Here, we observed that neuroblastoma cells display an increased expression of Cockayne Syndrome group B (CSB), a pleiotropic protein involved in multiple functions such as DNA repair, transcription, mitochondrial homeostasis, and cell division, and were recently found to confer cell robustness when they are up-regulated. In this study, we demonstrated that RNAi-mediated suppression of CSB drastically impairs tumorigenicity of neuroblastoma cells by hampering their proliferative, clonogenic, and invasive capabilities. In particular, we observed that CSB ablation induces cytokinesis failure, leading to caspases 9 and 3 activation and, subsequently, to massive apoptotic cell death. Worthy of note, a new frontier in cancer treatment, already proved to be successful, is cytokinesis-failure-induced cell death. In this context, CSB ablation seems to be a new and promising anticancer strategy for neuroblastoma therapy.
Collapse
|
5
|
Sato M, Liebau RC, Liu Z, Liu L, Rabadan R, Gautier J. The UVSSA complex alleviates MYC-driven transcription stress. J Cell Biol 2021; 220:e201807163. [PMID: 33404608 PMCID: PMC7791342 DOI: 10.1083/jcb.201807163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer cells develop strong genetic dependencies, enabling survival under oncogenic stress. MYC is a key oncogene activated across most cancers, and identifying associated synthetic lethality or sickness can provide important clues about its activity and potential therapeutic strategies. On the basis of previously conducted genome-wide screenings in MCF10A cells expressing MYC fused to an estrogen receptor fragment, we identified UVSSA, a gene involved in transcription-coupled repair, whose knockdown or knockout decreased cell viability when combined with MYC expression. Synthetic sick interactions between MYC expression and UVSSA down-regulation correlated with ATM/CHK2 activation, suggesting increased genome instability. We show that the synthetic sick interaction is diminished by attenuating RNA polymerase II (RNAPII) activity; yet, it is independent of UV-induced damage repair, suggesting that UVSSA has a critical function in regulating RNAPII in the absence of exogenous DNA damage. Supporting this hypothesis, RNAPII ChIP-seq revealed that MYC-dependent increases in RNAPII promoter occupancy are reduced or abrogated by UVSSA knockdown, suggesting that UVSSA influences RNAPII dynamics during MYC-dependent transcription. Taken together, our data show that the UVSSA complex has a significant function in supporting MYC-dependent RNAPII dynamics and maintaining cell survival during MYC addiction. While the role of UVSSA in regulating RNAPII has been documented thus far only in the context of UV-induced DNA damage repair, we propose that its activity is also required to cope with transcriptional changes induced by oncogene activation.
Collapse
Affiliation(s)
- Mai Sato
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Rowyn C. Liebau
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
- Department of Biology, Columbia University, New York, NY
| | - Zhaoqi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - Lizhi Liu
- Department of Biology, Columbia University, New York, NY
| | - Raul Rabadan
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| |
Collapse
|
6
|
Majora M, Sondenheimer K, Knechten M, Uthe I, Esser C, Schiavi A, Ventura N, Krutmann J. HDAC inhibition improves autophagic and lysosomal function to prevent loss of subcutaneous fat in a mouse model of Cockayne syndrome. Sci Transl Med 2019; 10:10/456/eaam7510. [PMID: 30158153 DOI: 10.1126/scitranslmed.aam7510] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 11/25/2017] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
Cockayne syndrome (CS), a hereditary form of premature aging predominantly caused by mutations in the csb gene, affects multiple organs including skin where it manifests with hypersensitivity toward ultraviolet (UV) radiation and loss of subcutaneous fat. There is no curative treatment for CS, and its pathogenesis is only partially understood. Originally considered for its role in DNA repair, Cockayne syndrome group B (CSB) protein most likely serves additional functions. Using CSB-deficient human fibroblasts, Caenorhabditiselegans, and mice, we show that CSB promotes acetylation of α-tubulin and thereby regulates autophagy. At the organ level, chronic exposure of csbm/m mice to UVA radiation caused a severe skin phenotype with loss of subcutaneous fat, inflammation, and fibrosis. These changes in skin tissue were associated with an accumulation of autophagic/lysosomal proteins and reduced amounts of acetylated α-tubulin. At the cellular level, we found that CSB directly interacts with the histone deacetylase 6 (HDAC6) and the α-tubulin acetyltransferase MEC-17. Upon UVA irradiation, CSB is recruited to the centrosome where it colocalizes with dynein and HDAC6. Administration of the pan-HDAC inhibitor SAHA (suberoylanilide hydroxamic acid) enhanced α-tubulin acetylation, improved autophagic function in CSB-deficient models from all three species, and rescued the skin phenotype in csbm/m mice. HDAC inhibition may thus represent a therapeutic option for CS.
Collapse
Affiliation(s)
- Marc Majora
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Kevin Sondenheimer
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Maren Knechten
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Ingo Uthe
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostics, University of Düsseldorf, Medical Faculty, 40225 Düsseldorf, Germany
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany. .,Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Boetefuer EL, Lake RJ, Fan HY. Mechanistic insights into the regulation of transcription and transcription-coupled DNA repair by Cockayne syndrome protein B. Nucleic Acids Res 2019; 46:7471-7479. [PMID: 30032309 PMCID: PMC6125617 DOI: 10.1093/nar/gky660] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
Cockayne syndrome protein B (CSB) is a member of the SNF2/SWI2 ATPase family and is essential for transcription-coupled nucleotide excision DNA repair (TC-NER). CSB also plays critical roles in transcription regulation. CSB can hydrolyze ATP in a DNA-dependent manner, alter protein-DNA contacts and anneal DNA strands. How the different biochemical activities of CSB are utilized in these cellular processes have only begun to become clear in recent years. Mutations in the gene encoding CSB account for majority of the Cockayne syndrome cases, which result in extreme sun sensitivity, premature aging features and/or abnormalities in neurology and development. Here, we summarize and integrate recent biochemical, structural, single-molecule and somatic cell genetic studies that have advanced our understanding of CSB. First, we review studies on the mechanisms that regulate the different biochemical activities of CSB. Next, we summarize how CSB is targeted to regulate transcription under different growth conditions. We then discuss recent advances in our understanding of how CSB regulates transcription mechanistically. Lastly, we summarize the various roles that CSB plays in the different steps of TC-NER, integrating the results of different studies and proposing a model as to how CSB facilitates TC-NER.
Collapse
Affiliation(s)
- Erica L Boetefuer
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lake
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Hua-Ying Fan
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Caputo M, Balzerano A, Arisi I, D’Onofrio M, Brandi R, Bongiorni S, Brancorsini S, Frontini M, Proietti-De-Santis L. CSB ablation induced apoptosis is mediated by increased endoplasmic reticulum stress response. PLoS One 2017; 12:e0172399. [PMID: 28253359 PMCID: PMC5333825 DOI: 10.1371/journal.pone.0172399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
The DNA repair protein Cockayne syndrome group B (CSB) has been recently identified as a promising anticancer target. Suppression, by antisense technology, of this protein causes devastating effects on tumor cells viability, through a massive induction of apoptosis, while being non-toxic to non-transformed cells. To gain insights into the mechanisms underlying the pro-apoptotic effects observed after CSB ablation, global gene expression patterns were determined, to identify genes that were significantly differentially regulated as a function of CSB expression. Our findings revealed that response to endoplasmic reticulum stress and response to unfolded proteins were ranked top amongst the cellular processes affected by CSB suppression. The major components of the endoplasmic reticulum stress-mediated apoptosis pathway, including pro-apoptotic factors downstream of the ATF3-CHOP cascade, were dramatically up-regulated. Altogether our findings add new pieces to the understanding of CSB mechanisms of action and to the molecular basis of CS syndrome.
Collapse
Affiliation(s)
- Manuela Caputo
- Unit of Molecular Genetics of Aging—Department of Ecology and Biology—University of Tuscia, Viterbo, Italy
| | - Alessio Balzerano
- Unit of Molecular Genetics of Aging—Department of Ecology and Biology—University of Tuscia, Viterbo, Italy
| | - Ivan Arisi
- Genomics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Rome, Italy
| | - Mara D’Onofrio
- Genomics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Rome, Italy
| | - Rossella Brandi
- Genomics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Rome, Italy
| | - Silvia Bongiorni
- Unit of Molecular Genetics of Aging—Department of Ecology and Biology—University of Tuscia, Viterbo, Italy
| | - Stefano Brancorsini
- Department of Experimental Medicine—Section of Terni, University of Perugia, Terni, Italy
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging—Department of Ecology and Biology—University of Tuscia, Viterbo, Italy
- * E-mail:
| |
Collapse
|
9
|
Li S, Shu FJ, Li Z, Jaafar L, Zhao S, Dynan WS. Cell-type specific role of the RNA-binding protein, NONO, in the DNA double-strand break response in the mouse testes. DNA Repair (Amst) 2017; 51:70-78. [PMID: 28209515 DOI: 10.1016/j.dnarep.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/22/2016] [Accepted: 02/04/2017] [Indexed: 01/03/2023]
Abstract
The tandem RNA recognition motif protein, NONO, was previously identified as a candidate DNA double-strand break (DSB) repair factor in a biochemical screen for proteins with end-joining stimulatory activity. Subsequent work showed that NONO and its binding partner, SFPQ, have many of the properties expected for bona fide repair factors in cell-based assays. Their contribution to the DNA damage response in intact tissue in vivo has not, however, been demonstrated. Here we compare DNA damage sensitivity in the testes of wild-type mice versus mice bearing a null allele of the NONO homologue (Nono gt). In wild-type mice, NONO protein was present in Sertoli, peritubular myoid, and interstitial cells, with an increase in expression following induction of DNA damage. As expected for the product of an X-linked gene, NONO was not detected in germ cells. The Nono gt/0 mice had at most a mild testis developmental phenotype in the absence of genotoxic stress. However, following irradiation at sublethal, 2-4 Gy doses, Nono gt/0 mice displayed a number of indicators of radiosensitivity as compared to their wild-type counterparts. These included higher levels of persistent DSB repair foci, increased numbers of apoptotic cells in the seminiferous tubules, and partial degeneration of the blood-testis barrier. There was also an almost complete loss of germ cells at later times following irradiation, evidently arising as an indirect effect reflecting loss of stromal support. Results demonstrate a role for NONO protein in protection against direct and indirect biological effects of ionizing radiation in the whole animal.
Collapse
Affiliation(s)
- Shuyi Li
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA.
| | - Feng-Jue Shu
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Zhentian Li
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Lahcen Jaafar
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Shourong Zhao
- Columbus Pathology,710 Center Street 101, Columbus, GA 31901, USA
| | - William S Dynan
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Nucleotide Excision Repair: From Neurodegeneration to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:17-39. [PMID: 28840550 DOI: 10.1007/978-3-319-60733-7_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA damage poses a constant threat to genome integrity taking a variety of shapes and arising by normal cellular metabolism or environmental insults. Human syndromes, characterized by increased cancer pre-disposition or early onset of age-related pathology and developmental abnormalities, often result from defective DNA damage responses and compromised genome integrity. Over the last decades intensive research worldwide has made important contributions to our understanding of the molecular mechanisms underlying genomic instability and has substantiated the importance of DNA repair in cancer prevention in the general population. In this chapter, we discuss Nucleotide Excision Repair pathway, the causative role of its components in disease-related pathology and recent technological achievements that decipher mutational landscapes and may facilitate pathological classification and personalized therapy.
Collapse
|