1
|
Sergio S, Spedicato B, Corallo G, Inguscio A, Greco M, Musarò D, Vergara D, Muro AF, De Sabbata G, Soria LR, Pierri NB, Maffia M. β-Catenin/c-Myc Axis Modulates Autophagy Response to Different Ammonia Concentrations. Adv Biol (Weinh) 2025; 9:e2400408. [PMID: 39798123 PMCID: PMC11911958 DOI: 10.1002/adbi.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/13/2024] [Indexed: 01/15/2025]
Abstract
Ammonia a by-product of nitrogen containing molecules is detoxified by liver into non-toxic urea and glutamine. Impaired ammonia detoxification leads to hyperammonemia. Ammonia has a dual role on autophagy, it acts as inducer at low concentrations and as inhibitor at high concentrations. However, little is known about the mechanisms responsible for this switch. Wnt/β-catenin signalling is emerging for its role in the regulation of ammonia metabolizing enzymes and autophagosome synthesis through c-Myc. Here, using Huh7 cell line, we show a modulation in c-Myc expression under different ammonia concentrations. An increase in c-Myc expression and in its transcriptional regulator β-catenin was detected at low concentrations of ammonia, when autophagy is active, whereas these modifications were lost under high ammonia concentrations. These observations were also recapitulated in the livers of spf-ash mice, a model of constitutive hyperammonaemia due to deficiency in ornithine transcarbamylase enzyme. Moreover, c-Myc-mediated activation of autophagy plays a cytoprotective role in cells under ammonia stress conditions as confirmed through the pharmacological inhibition of c-Myc in Huh7 cells treated with low ammonia concentrations. In conclusion, the unravelled role of c-Myc in modulating ammonia induced autophagy opens new landscapes for the development of novel strategies for the treatment of hyperammonemia.
Collapse
Affiliation(s)
- S. Sergio
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - B. Spedicato
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - G. Corallo
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - A. Inguscio
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - M. Greco
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - D. Musarò
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - D. Vergara
- Laboratory of General and Human PhysiologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecce73100Italy
| | - A. F. Muro
- International Centre for Genetic Engineering and BiotechnologyTrieste34149Italy
| | - G. De Sabbata
- International Centre for Genetic Engineering and BiotechnologyTrieste34149Italy
| | - L. R. Soria
- Telethon Institute of Genetics and MedicinePozzuoli80078Italy
| | - N. Brunetti Pierri
- Telethon Institute of Genetics and MedicinePozzuoli80078Italy
- Department of Translational MedicineFederico II UniversityNaples80138Italy
| | - M. Maffia
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| |
Collapse
|
2
|
In Silico Identification of Genes Associated with Breast Cancer Progression and Prognosis and Novel Therapeutic Targets. Biomedicines 2022; 10:biomedicines10112995. [PMID: 36428562 PMCID: PMC9687996 DOI: 10.3390/biomedicines10112995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Molecular mechanisms underlying breast cancer (BC) progression are complex and remain unclear. In this study, we used bioinformatic tools to identify genes associated with tumor progression mechanisms and novel therapeutic targets in BC. We identified genes with stepwise upregulated expression overlapping between the T and N stages during BC progression using LinkedOmics. We compared the expression level of each gene in BC tissues with that in normal breast tissues and evaluated differences in expression in their intrinsic subtypes and their prognostic value using UALCAN and GEPIA2. We also investigated the dependency of BC cell lines on these genes and whether they are potential therapeutic targets using DepMap. SPDEF, TRIM3, ABCB9, HSPB1, RHBG, SPINT1, EPN3, LRFN2, and PRPH were found to be involved in BC progression. High expression of ABCB9 and SPINT1 was associated with a poor prognosis. SPDEF, TRIM3, ABCB9, RHBG, SPINT1, and PRPH were found to be essential for survival in some BC cell lines (gene effect score < −0.5). PRPH was newly discovered to be involved in the progression of BC and the growth and survival of BC cell lines. Hence, SPDEF, TRIM3, ABCB9, RHBG, SPINT1, and PRPH may serve as novel potential therapeutic targets in BC.
Collapse
|
3
|
Keshavarzi M, Moradbeygi F, Mobini K, Ghaffarian Bahraman A, Mohammadi P, Ghaedi A, Mohammadi-Bardbori A. The interplay of aryl hydrocarbon receptor/WNT/CTNNB1/Notch signaling pathways regulate amyloid beta precursor mRNA/protein expression and effected the learning and memory of mice. Toxicol Res (Camb) 2021; 11:147-161. [PMID: 35237419 PMCID: PMC8882790 DOI: 10.1093/toxres/tfab120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
The amyloid beta precursor protein (APP) plays a pathophysiological role in the development of Alzheimer's disease as well as a physiological role in neuronal growth and synaptogenesis. The aryl hydrocarbon receptor (AhR)/WNT/Catenin Beta 1 (CTNNB1)/Notch signaling pathways stamp in many functions, including development and growth of neurons. However, the regulatory role of AhR-/WNT-/CTNNB1-/Notch-induced APP expression and its influence on hippocampal-dependent learning and memory deficits is not clear. Male BALB/C mice received 6-formylindolo[3,2-b]carbazole (an AhR agonist), CH223191(an AhR antagonist), DAPT (an inhibitor of Notch signaling), and XAV-939 (a WNT pathway inhibitor) at a single dose of 100 μg/kg, 1, 5 , and 5 mg/kg of body weight, respectively, via intraperitoneal injection alone or in combination. Gene expression analyses and protein assay were performed on the 7th and 29th days. To assess the hippocampal-dependent memory, all six mice also underwent contextual fear conditioning on the 28th day after treatments. Our results showed that endogenous ligand of AhR has a regulatory effect on APP gene. Also, the interaction of AhR/WNT/CTNNB1 has a positive regulatory effect, but Notch has a negative regulatory effect on the mRNA and protein expression of APP, which have a correlation with mice's learning skills and memory.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Keivan Mobini
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Ghaffarian Bahraman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parisa Mohammadi
- Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Afsaneh Ghaedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Afshin Mohammadi-Bardbori
- Correspondence address. Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran. Tel.: +98(71)32425374; Fax: +98(71)32424326; E-mail:
| |
Collapse
|
4
|
Frieg B, Görg B, Gohlke H, Häussinger D. Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol Chem 2021; 402:1063-1072. [PMID: 33962502 DOI: 10.1515/hsz-2021-0166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Glutamine synthetase (GS) in the liver is expressed in a small perivenous, highly specialized hepatocyte population and is essential for the maintenance of low, non-toxic ammonia levels in the organism. However, GS activity can be impaired by tyrosine nitration of the enzyme in response to oxidative/nitrosative stress in a pH-sensitive way. The underlying molecular mechanism as investigated by combined molecular simulations and in vitro experiments indicates that tyrosine nitration can lead to a fully reversible and pH-sensitive regulation of protein function. This approach was also used to understand the functional consequences of several recently described point mutations of human GS with clinical relevance and to suggest an approach to restore impaired GS activity.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Zhang X, Pan L, Wei C, Tong R, Li Y, Ding M, Wang H. Crustacean hyperglycemic hormone (CHH) regulates the ammonia excretion and metabolism in white shrimp, Litopenaeus vannamei under ammonia-N stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138128. [PMID: 32222513 DOI: 10.1016/j.scitotenv.2020.138128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 05/21/2023]
Abstract
To understand the adaptation of Litopenaeus vannamei to high environmental ammonia-N, RNA interference was used to investigate the function of crustacean hyperglycemic hormone (CHH) in the physiological process of neuroendocrine signaling transduction, and ammonia excretion and metabolism. The shrimp were exposed to 25 mg/L NH4Cl and injected with 20 μg/shrimp CHH dsRNA for 72 h. The results showed that hemolymph ammonia content increased under ammonia-N stress and further increased after CHH knockdown, suggesting that CHH can promote ammonia excretion. Moreover, after CHH knockdown, the levels of CHH, DA, and Wnts decreased significantly, the expression of receptor GC, DA1R, Frizzled and LRP 5/6 also decreased, while DA4R increased remarkably. Moreover, PKA and PKG decreased, while PKC markedly increased, and nuclear transcription factors (CREB and TCF) as well as effector proteins (β-catenin, FXYD2, and 14-3-3) were significantly downregulated. Furthermore, ammonia transporters Na+/K+-ATPase (NKA), K+channel, Rh protein, AQP, V-ATPase, and VAMP decreased significantly, while Na+/H+ exchangers (NHE) and Na+/K+/2Cl- cotransporter (NKCC) increased significantly. These results suggest that CHH regulates ammonia excretion in three ways: 1) by mainly regulating ion channels via PKA, PKC, and PKG signaling pathways; 2) by activating related proteins primarily through Wnt signaling pathway; and 3) by exocytosis, mostly induced by the PKA signaling pathway. In addition, the levels of Gln, uric acid, and urea increased in accordance with the activities of GDH/GS, XDH, and arginase, respectively, suggesting that ammonia excretion was inhibited but ammonia metabolism was slightly enhanced. This study deepens our understanding of the mechanism by which crustaceans respond to high environmental ammonia-N.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Cun Wei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
6
|
Li Y, Huang S, Wei Z, Yang B. A putative competing endogenous RNA network in cisplatin-resistant lung adenocarcinoma cells identifying potentially rewarding research targets. Oncol Lett 2020; 19:4040-4052. [PMID: 32382346 PMCID: PMC7202328 DOI: 10.3892/ol.2020.11483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer and has a poor 5 year survival rate (<10%). Cisplatin is one of the most effective chemotherapeutic treatments for LUAD, even though it is of limited overall utility due to acquired drug resistance. To identify possible genetic targets for the mitigation of cisplatin resistance, gene expression data from cisplatin-resistant cell lines were integrated with patient information. Expression data for cisplatin-resistant and cisplatin-sensitive A549 cell lines were obtained from the Gene Expression Omnibus database, while LUAD patient data was obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNAs (DEmRNAs), microRNAs (DEmiRNAs) and long non-coding RNAs (DElncRNAs) were identified between the cisplatin-sensitive and cisplatin-resistant cells. Using the TCGA patient data, 33 DEmRNAs associated with survival were identified. A total of 74 DElncRNAs co-expressed with the survival-associated DEmRNAs, and 11 DEmiRNAs that regulated the survival-associated DEmRNAs, were also identified. A competing endogenous RNA (ceRNA) network was constructed based on the aforementioned results, which included 17 survival-associated DEmRNAs, 9 DEmiRNAs and 16 DElncRNAs. This network revealed 8 ceRNA pathway axes possibly associated with cisplatin resistance in A549 cells. Specifically, the network suggested that the lncRNAs HOXD-AS2, LINC01123 and FIRRE may act as ceRNAs to increase cisplatin resistance in human LUAD cells. Therefore, it was speculated that these lncRNAs represent potentially rewarding research targets.
Collapse
Affiliation(s)
- Yepeng Li
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Shiqing Huang
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zhongheng Wei
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Bo Yang
- Key Laboratory of Guangxi College and Universities, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
7
|
Chen P, Liu C, Li P, Wang Q, Gao X, Wu H, Huang J. High RhCG expression predicts poor survival and promotes migration and proliferation of gastric cancer via keeping intracellular alkaline. Exp Cell Res 2020; 386:111740. [PMID: 31756312 DOI: 10.1016/j.yexcr.2019.111740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022]
Abstract
Advanced gastric cancer (GC) is aggressive with a high mortality rate. Rhesus family, C glycoprotein (RhCG) participates in tumor progression in many cancers, however its function in GC is still unknown. Here, we showed that RhCG was overexpressed in GC tissues at mRNA (P = 0.036) and protein levels (P < 0.05) compared with normal tissues. High RhCG level was correlated with poor differentiation (P = 0.037), TNM stage (P < 0.001), high HER-2 level (P = 0.018) and worse prognosis (P < 0.001). Cox proportional hazard model indicated that RhCG level was an independent prognostic biomarker. RhCG knockdown significantly decreased pHi and impeded tumor cellular proliferation, migration and invasion and repressed β-catenin and c-myc expression in GC cells. Moreover, GC cells with high RhCG level had reduced oxaliplatin efficacy suggesting a role for RhCG as a therapeutic target for GC. Our findings revealed a function of RhCG in cancer pathogenesis, invasion and metastasis in human GC. We suggest that RhCG act may as a novel prognostic indicator and a therapeutic target for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Pei Chen
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China; Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Can Liu
- Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Xiaodong Gao
- Department of General Surgery, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Han Wu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China.
| | - JianFei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China; Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
8
|
Duan FG, Wang MF, Cao YB, Dan Li, Li RZ, Fan XX, Khan I, Lai HL, Zhang YZ, Hsiao WWL, Yao XJ, Wu QB, Liu L, Tang YJ, Leung ELH. MicroRNA-421 confers paclitaxel resistance by binding to the KEAP1 3'UTR and predicts poor survival in non-small cell lung cancer. Cell Death Dis 2019; 10:821. [PMID: 31659154 PMCID: PMC6817891 DOI: 10.1038/s41419-019-2031-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs regulate post-transcriptional gene expression and play important roles in multiple cellular processes. In this study, we found that miR-421 suppresses kelch-like ECH-associated protein 1(KEAP1) expression by targeting its 3'-untranslated region (3'UTR). A Q-PCR assay demonstrated that miR-421 is overexpressed in non-small cell lung cancer (NSCLC), especially in A549 cells. Consistently, the level of miR-421 was higher in clinical blood samples from lung cancer patients than in those from normal healthy donors, suggesting that miR-421 is an important lung cancer biomarker. Interestingly, overexpression of miR-421 reduced the level of KEAP1 expression, which further promoted lung cancer cell migration and invasion, as well as inhibited cell apoptosis both in vivo and in vitro. Furthermore, knockdown of miR-421 expression with an antisense morpholino oligonucleotide (AMO) increased ROS levels and treatment sensitivity to paclitaxel in vitro and in vivo, indicating that high miR-421 expression may at least partly account for paclitaxel tolerance in lung cancer patients. To find the upstream regulator of miR-421, one of the candidates, β-catenin, was knocked out via the CRISPR/Cas9 method in A549 cells. Our data showed that inhibiting β-catenin reduced miR-421 levels in A549 cells. In addition, β-catenin upregulation enhanced miR-421 expression, indicating that β-catenin regulates the expression of miR-421 in lung cancer. Taken together, our findings reveal the critical role of miR-421 in paclitaxel drug resistance and its upstream and downstream regulatory mechanisms. Therefore, miR-421 may serve as a potential molecular therapeutic target in lung cancer, and AMOs may be a potential treatment strategy.
Collapse
Affiliation(s)
- Fu-Gang Duan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Mei-Fang Wang
- Department of Respiratory and Critical Care, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ya-Bing Cao
- Department of Oncology, Kiang Wu Hospital, Macau, China
| | - Dan Li
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Huan-Ling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Wendy Wen-Luan Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China.
| | - Yi-Jun Tang
- Department of Respiratory and Critical Care, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China. .,Department of Respiratory and Critical Care, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China. .,Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China.
| |
Collapse
|
9
|
Kant S, Davuluri G, Alchirazi KA, Welch N, Heit C, Kumar A, Gangadhariah M, Kim A, McMullen MR, Willard B, Luse DS, Nagy LE, Vasiliou V, Marini AM, Weiner ID, Dasarathy S. Ethanol sensitizes skeletal muscle to ammonia-induced molecular perturbations. J Biol Chem 2019; 294:7231-7244. [PMID: 30872403 DOI: 10.1074/jbc.ra118.005411] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Ethanol causes dysregulated muscle protein homeostasis while simultaneously causing hepatocyte injury. Because hepatocytes are the primary site for physiological disposal of ammonia, a cytotoxic cellular metabolite generated during a number of metabolic processes, we determined whether hyperammonemia aggravates ethanol-induced muscle loss. Differentiated murine C2C12 myotubes, skeletal muscle from pair-fed or ethanol-treated mice, and human patients with alcoholic cirrhosis and healthy controls were used to quantify protein synthesis, mammalian target of rapamycin complex 1 (mTORC1) signaling, and autophagy markers. Alcohol-metabolizing enzyme expression and activity in mouse muscle and myotubes and ureagenesis in hepatocytes were quantified. Expression and regulation of the ammonia transporters, RhBG and RhCG, were quantified by real-time PCR, immunoblots, reporter assays, biotin-tagged promoter pulldown with proteomics, and loss-of-function studies. Alcohol and aldehyde dehydrogenases were expressed and active in myotubes. Ethanol exposure impaired hepatocyte ureagenesis, induced muscle RhBG expression, and elevated muscle ammonia concentrations. Simultaneous ethanol and ammonia treatment impaired protein synthesis and mTORC1 signaling and increased autophagy with a consequent decreased myotube diameter to a greater extent than either treatment alone. Ethanol treatment and withdrawal followed by ammonia exposure resulted in greater impairment in muscle signaling and protein synthesis than ammonia treatment in ethanol-naive myotubes. Of the three transcription factors that were bound to the RhBG promoter in response to ethanol and ammonia, DR1/NC2 indirectly regulated transcription of RhBG during ethanol and ammonia treatment. Direct effects of ethanol were synergistic with increased ammonia uptake in causing dysregulated skeletal muscle proteostasis and signaling perturbations with a more severe sarcopenic phenotype.
Collapse
Affiliation(s)
- Sashi Kant
- From the Departments of Inflammation and Immunity
| | | | | | - Nicole Welch
- From the Departments of Inflammation and Immunity
| | - Claire Heit
- the Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | | | | | - Adam Kim
- From the Departments of Inflammation and Immunity
| | | | - Belinda Willard
- Metabolomic and Proteomics Core, Cleveland Clinic, Cleveland, Ohio 44195
| | | | - Laura E Nagy
- From the Departments of Inflammation and Immunity
| | - Vasilis Vasiliou
- the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510
| | - Anna Maria Marini
- the Biology of Membrane Transport Laboratory, Department of Molecular Biology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles CP300, 6041 Gosselies, Belgium
| | - I David Weiner
- the Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, School of Medicine, University of Florida, Gainesville, Florida 32610, and.,the Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida 32608
| | | |
Collapse
|
10
|
Taurine transporter (TauT) deficiency impairs ammonia detoxification in mouse liver. Proc Natl Acad Sci U S A 2019; 116:6313-6318. [PMID: 30862735 DOI: 10.1073/pnas.1813100116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic ammonia handling was analyzed in taurine transporter (TauT) KO mice. Surprisingly, hyperammonemia was present at an age of 3 and 12 months despite normal tissue integrity. This was accompanied by cerebral RNA oxidation. As shown in liver perfusion experiments, glutamine production from ammonia was diminished in TauT KO mice, whereas urea production was not affected. In livers from 3-month-old TauT KO mice protein expression and activity of glutamine synthetase (GS) were unaffected, whereas the ammonia-transporting RhBG protein was down-regulated by about 50%. Double reciprocal plot analysis of glutamine synthesis versus perivenous ammonia concentration revealed that TauT KO had no effect on the capacity of glutamine formation in 3-month-old mice, but doubled the ammonia concentration required for half-maximal glutamine synthesis. Since hepatic RhBG expression is restricted to GS-expressing hepatocytes, the findings suggest that an impaired ammonia transport into these cells impairs glutamine synthesis. In livers from 12-, but not 3-month-old TauT KO mice, RhBG expression was not affected, surrogate markers for oxidative stress were strongly up-regulated, and GS activity was decreased by 40% due to an inactivating tyrosine nitration. This was also reflected by kinetic analyses in perfused liver, which showed a decreased glutamine synthesizing capacity by 43% and a largely unaffected ammonia concentration dependence. It is concluded that TauT deficiency triggers hyperammonemia through impaired hepatic glutamine synthesis due to an impaired ammonia transport via RhBG at 3 months and a tyrosine nitration-dependent inactivation of GS in 12-month-old TauT KO mice.
Collapse
|
11
|
Si L, Pan L, Zhang X, Wang H, Wei C. Evidence that dopamine is involved in neuroendocrine regulation, gill intracellular signaling pathways and ion regulation in Litopenaeus vannamei. J Exp Biol 2019; 222:jeb.204073. [DOI: 10.1242/jeb.204073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023]
Abstract
The transport of ions and ammonia in the gills may be regulated by neuroendocrine factors, in order to explore the regulation mechanism of dopamine (DA), hemolymph neuroendocrine hormones, gill intracellular signaling pathways, ion and ammonia transporters, as well as hemolymph osmolality and ammonia concentration were investigated in Litopenaeus vannamei after 10−7 and 10−6 mol shrimp−1 DA injection. The data displayed a significant increase in crustacean hyperglycemic hormone (CHH) concentration at 1-12 h and a transient significant decrease in corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol concentrations under DA stimulation. The up-regulation of guanylyl cyclase (GC) mRNA, cyclic guanosine monophosphate (cGMP) and protein kinase G (PKG) concentrations, together with down-regulation of DA receptor D4 mRNA and up-regulation of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), diacylglycerol (DAG) and protein kinase C (PKC) concentrations suggested an activation of complicated intracellular signaling pathway. The expression of cyclic AMP response element-binding protein (CREB), FXYD2 and 14-3-3 protein mRNA was significantly increased by PKA regulation. The increase in Na+/K+-ATPase (NKA) activity and the stabilization of V-type H+-ATPase (V-ATPase) activity are accompanied by an up-regulation of K+-channel, Na+/K+/2Cl− cotransporter (NKCC), Rh protein and vesicle associated membrane protein (VAMP) mRNA, resulting in an increase in hemolymph osmolality and a decrease in hemolymph ammonia concentration. These results suggest that DA stimulates the secretion of CHH and inhibits the release of cortisol, which activates intracellular signaling factors to facilitate ion and ammonia transport across the gills, and may not affect intracellular acidification.
Collapse
Affiliation(s)
- Lingjun Si
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Hongdan Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Cun Wei
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
12
|
Si L, Pan L, Wang H, Zhang X. Ammonia-N exposure alters neurohormone levels in the hemolymph and mRNA abundance of neurohormone receptors and associated downstream factors in the gills of Litopenaeus vannamei. J Exp Biol 2019; 222:jeb.200204. [DOI: 10.1242/jeb.200204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Effects of ammonia-N (0.05, 2, 10 and 20 mg L−1) on the neuroendocrine regulation of ammonia transport were investigated in Litopenaeus vannamei. The results showed that corticotrophin-releasing hormone, adrenocorticotropic hormone, dopamine, noradrenaline and 5-hydroxytryptamine concentration in all ammonia-N groups increased significantly between 3-12 h. Cortisol increased significantly between 3-24 h. All hormones except crustacean hyperglycemic hormone were reduced to control levels. mRNA abundance of guanylyl cyclase increased significantly during the experiment. Dopamine receptor D4 and α2 adrenergic receptor mRNA abundance in treatments decreased significantly at the beginning, and eventually returned to the control level, whereas mRNA abundance of 5-HT7 receptor increased significantly only within the first 12 h. Changes of protein kinases (PKA, PKG) mRNA abundance were similar to the patterns of biogenic amines and crustacean hyperglycemic hormone, peaking at 6 h and 12 h respectively, while PKC decreased within 24 h. 14-3-3 protein, FXYD2 and cAMP-response element binding protein mRNA abundance of treatments increased significantly and peaked at 6 h. β-catenin and T-cell factor mRNA abundance increased significantly throughout the experiment and peaked at 12 h. The up-regulation of Rh protein, K+-channel, Na+/K+-ATPase, V-type H+-ATPase and vesicle associated membrane protein (VAMP) mRNA, together with down-regulation of Na+/K+/2Cl− cotransporter mRNA indicated an adjustment of general branchial ion-/ammonia-regulatory mechanisms. Meanwhile, hemolymph ammonia concentration was significantly increased in most ammonia-N exposure groups. Histological investigation revealed the hepatopancreatic damage caused by ammonia-N. The results suggest hormones, biogenic amines and Wnt/β-catenin play a principal role in adapting to ammonia-N exposure and facilitating ammonia transport.
Collapse
Affiliation(s)
- Lingjun Si
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Hongdan Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
13
|
Han X, Zheng J, Wang Y, Gao Z. miRNA-29a inhibits colon cancer growth by regulation of the PTEN/Akt/GSK3β and Wnt/β-catenin signaling pathways. Oncol Lett 2018; 16:2638-2644. [PMID: 30013659 DOI: 10.3892/ol.2018.8905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
In the present study, the effects of microRNA-29a (miRNA-29a) on colon cancer cell viability and the molecular mechanisms underlying the effects were investigated. The expression of miRNA-29a in colon cancer serum samples was notably downregulated, compared with in the normal group. First, miRNA-29a mimic was used to increase the expression of miRNA-29a in HCT-116 cells. Furthermore, upregulation of miRNA-29a suppressed cell viability, increased lactate dehydrogenase levels and apoptosis, and promoted caspase-3/9 activities and B-cell lymphoma 2-associated X protein and phosphatase and tensin homolog (PTEN) protein expression in colon cancer cells. Furthermore, upregulation of miRNA-29a decreased phosphoinositide 3-kinase, phosphorylated (p)-protein kinase B (Akt) and p-glycogen synthase kinase 3β (GSK3β) protein expression and suppressed the Wnt/β-catenin signaling pathway in colon cancer cells. The results of the present study verified that the protective effects of miRNA-29a suppress the PTEN/Akt/GSK3β and Wnt/β-catenin signaling pathways in colon cancer.
Collapse
Affiliation(s)
- Xiaofeng Han
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jianwei Zheng
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Yunlei Wang
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Zhigang Gao
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| |
Collapse
|
14
|
Merhi A, Delrée P, Marini AM. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep 2017; 7:44602. [PMID: 28303961 PMCID: PMC5355986 DOI: 10.1038/srep44602] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
Two structurally and functionally distinct mammalian TOR complexes control cell growth and metabolism in physiological and pathological contexts including cancer. Upregulated glutaminolysis is part of the metabolic reprogramming occurring in cancer, providing fuels for growth but also liberating ammonium, a potent neurotoxic waste product. Here, we identify ammonium as a novel dose-dependent signal mediating rapid mTORC2 activation and further regulating mTORC1. We show that ammonium induces rapid RICTOR-dependent phosphorylation of AKT-S473, a process requiring the PI3K pathway and further involving the Src-family kinase YES1, the FAK kinase and the ITGβ1 integrin. Release of calcium from the endoplasmic reticulum store triggers rapid mTORC2 activation, similar to ammonium-induced activation, the latter being conversely prevented by calcium chelation.Moreover, in analogy to growth factors, ammonium triggers the AKT-dependent phosphoinhibition of the TSC complex and of PRAS40, two negative regulators of mTORC1. Consistent with mTORC1 stimulation, ammonium induces the inhibitory phosphorylation of 4EBP1, a negative regulator of protein biogenesis. Ammonium however dually impacts on the phosphorylation of p70S6K1 triggering a transient AKT-independent decrease in the phosphorylation of this second mTORC1 readout. Finally, we reveal ammonium as a dose-dependent stimulator of proliferation. This study underscores an mTORC2 and mTORC1 response to the so-called ammonium waste.
Collapse
Affiliation(s)
- Ahmad Merhi
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.,Institute of Pathology and Genetics, Avenue Georges Lemaître 25, 6041 Gosselies, Belgium.,Tumour Bank, Institute of Pathology and Genetics, Avenue Georges Lemaître 25, 6041 Gosselies, Belgium
| | - Paul Delrée
- Institute of Pathology and Genetics, Avenue Georges Lemaître 25, 6041 Gosselies, Belgium.,Tumour Bank, Institute of Pathology and Genetics, Avenue Georges Lemaître 25, 6041 Gosselies, Belgium
| | - Anna Maria Marini
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| |
Collapse
|
15
|
Zhu XB, Zhang ZC, Han GS, Han JZ, Qiu DP. Overexpression of miR‑214 promotes the progression of human osteosarcoma by regulating the Wnt/β‑catenin signaling pathway. Mol Med Rep 2017; 15:1884-1892. [PMID: 28260089 DOI: 10.3892/mmr.2017.6203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 11/24/2016] [Indexed: 11/05/2022] Open
Abstract
The aberrant expression of microRNA (miR)‑214 contributes to the regulation of normal and cancer cell biology, and is associated with human malignancies, however, it can operate in a contradictory manner. The role of miR‑214 in osteosarcoma remains to be fully elucidated. The aim of the present study was to investigate the effects of miR‑214 on osteosarcoma progression and tumor cell proliferation, and examine the molecular mechanism underlying osteosarcoma. The level of miR‑214 was determined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis in osteosarcoma and matched paracancerous tissues, and in human osteosarcoma cancer cell lines. The roles of miR‑214 in cell proliferation, survival and cell cycle were analyzed using miR‑214 lentivirus (LV‑miR‑214)‑infected osteosarcoma cells. In addition, the downstream target proteins in the Wnt/β‑catenin signaling pathway were evaluated using western blot analysis in the LV‑miR‑214‑infected cells. The LV‑miR‑214‑infected MG63 cells were also treated with exogenous β‑catenin for 24, 48 and 72 h, respectively, following which the expression of β‑catenin was measured using western blot analysis and survival was determined using a 3‑(4,5‑cimethylthiazol‑2‑yl)‑2,5‑diphenyl tetrazolium bromide (MTT) assay. The results of the RT‑qPCR analysis showed that the expression level of miR‑214 was significantly higher in the osteosarcoma tissues, compared with that in the matched paracancerous tissues, and the same was observed in the osteosarcoma cell lines. The MG63, Saos‑2 and U2OS cells were infected with the hsa‑mir‑214 lentivirus for 48 h, and the levels of miR‑214 were significantly upregulated in the human osteosarcoma cancer cells. The overexpression of miR‑214 in the MG‑63 and Saos‑2 cells promoted cell growth, and treatment of the cells with specific antisense‑microRNA oligonucleotides (AMOs) for miR‑214 for indicated durations reversed the effects of miR‑214. Additionally, the AMO‑treated MG63 cells showed G0/G1 phase arrest, suggesting that miR‑214 contributed to regulation of the cell cycle. In addition, the results of western blot analysis showed that, in the miR‑214 lentivirus‑infected cells, the levels of cyclin‑D1, c‑myc and lymphoid enhancer‑binding factor‑1 were significantly increased, compared with those in the control lentivirus‑infected cancer cells. Of note, infection with the miR‑214 lentivirus did not affect the levels of Wnt1, Wnt2, Wnt4, Axin or glycogen synthase kinase β in the U2OS cells, whereas the expression levels of β‑catenin in the MG63 cells and Saos‑2 cells were significantly increased. The addition of exogenous β‑catenin effectively reversed the efficiency of miR‑214‑specific AMOs, which was detected using an MTT assay. These data suggested the critical role of miR‑214 in human osteosarcoma via regulation of the Wnt/β‑catenin signaling pathway and demonstrated that miR‑214 is as an oncogene for human osteosarcoma.
Collapse
Affiliation(s)
- Xun-Bing Zhu
- Department of Orthopedics, Key Laboratory of Anhui Tissue Transplantation, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Zhong-Chuan Zhang
- Department of Orthopedics, Key Laboratory of Anhui Tissue Transplantation, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Guan-Sheng Han
- Department of Orthopedics, Key Laboratory of Anhui Tissue Transplantation, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Jun-Zhu Han
- Department of Orthopedics, Key Laboratory of Anhui Tissue Transplantation, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Da-Peng Qiu
- Department of Orthopedics, Key Laboratory of Anhui Tissue Transplantation, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| |
Collapse
|
16
|
Boeckstaens M. [From the discovery of microbial Mep-Amt ammonium transporters to human Rhesus factors]. Med Sci (Paris) 2016; 32:394-400. [PMID: 27137697 DOI: 10.1051/medsci/20163204018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ammonium, ubiquitous on Earth, plays major and distinct roles in most organisms. While it can be a nitrogen source for many microorganisms and plants, it is a cytotoxic metabolic product actively detoxified by the liver in animals. Furthermore, in the latter, ammonium synthesis in the kidney is involved in acid/base homeostasis. Ammonium transport is ensured by a family of proteins, called Mep-Amt-Rh. This family is conserved in all domains of life and comprises the human Rh factors, notably known in transfusional medicine. While the study of bacterial, fungal and vegetal Mep-Amt transporters reveals a fine-tuned and rapid regulation of these proteins in function of environmental changes, the regulation of animal Rh proteins has been poorly addressed. This review notably highlights the importance of the yeast model in the study of the regulation of these proteins as well as in the functional characterization of Mep-Amt-Rh members of diverse origins.
Collapse
Affiliation(s)
- Mélanie Boeckstaens
- Laboratoire de biologie du transport membranaire, IBMM, université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgique
| |
Collapse
|