1
|
Satija K, Anjankar VP. Molecular Characterization of Multidrug-Resistant Shigella flexneri. Cureus 2024; 16:e53276. [PMID: 38435906 PMCID: PMC10905316 DOI: 10.7759/cureus.53276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Due to their propensity for causing diarrheal illnesses and their rising susceptibility to antimicrobials, Shigella infections constitute a serious threat to global public health. This extensive study explores the frequency, antibiotic resistance, genetic evolution, and effects of Shigella infections on vulnerable groups. The research covers a wide range of geographical areas and sheds information on how the prevalence of Shigella species is evolving. Shigella strain antimicrobial resistance patterns are thoroughly examined. Multidrug resistance (MDR) has been found to often occur in investigations, especially when older antimicrobials are used. The improper use of antibiotics in China is blamed for the quick emergence of resistance, and variations in resistance rates have been seen across different geographical areas. Shigella strains' genetic makeup can be used to identify emerging trends and horizontal gene transfer's acquisition of resistance genes. Notably, S. sonnei exhibits the capacity to obtain resistance genes from nearby bacteria, increasing its capacity for infection. The study also emphasizes the difficulties in accurately serotyping Shigella strains due to inconsistencies between molecular and conventional serology. These results highlight the necessity of reliable diagnostic methods for monitoring Shigella infections. In conclusion, this study emphasizes how dynamic Shigella infections are, with varying patterns of occurrence, changing resistance landscapes, and genetic adaptability. In addition to tackling the rising problem of antibiotic resistance in Shigella infections, these findings are essential for guiding efforts for disease surveillance, prevention, and treatment.
Collapse
Affiliation(s)
- Kshitij Satija
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vaibhav P Anjankar
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Sadredinamin M, Yazdansetad S, Alebouyeh M, Yazdi MMK, Ghalavand Z. Shigella Flexneri Serotypes: O-antigen Structure, Serotype Conversion, and Serotyping Methods. Oman Med J 2023; 38:e522. [PMID: 37724320 PMCID: PMC10505279 DOI: 10.5001/omj.2023.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/04/2022] [Indexed: 09/20/2023] Open
Abstract
Shigella flexneri is the most common cause of shigellosis in developing countries. Up to now, 23 serotypes of S. flexneri have been reported. Different serotypes result from the addition of acetyl, glucosyl, or phosphatidylethanolamine groups on the O-antigen backbone and horizontal transfer of mentioned groups can lead to serotype conversion among S. flexneri strains. Serotype conversion causes either a circulation of pre-existing serotypes or is responsible for the emergence of new serotypes. Serotype conversion plays a pivotal role in the protection and evasion of S. flexneri from the host immune response. Furthermore, spreading any new serotype can provide evolutionary advantages. Hence, information about S. flexneri O-antigen structure, serotype conversion, and serotyping methods can be helpful to understand the disease that attributes distinct serotypes in order to apply control or prevention methods in accordance with predominant serotypes over the course of time. Thus, the scope of this review is to give an overview of the serotype structures, factors involved in O-antigen modification, molecular analysis, and epidemiological evidence for the benefits of serotype conversion for S. flexneri serotypes. We are also providing a review of the typing methods.
Collapse
Affiliation(s)
- Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Yazdansetad
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Prevalence of Multidrug-Resistant and Extended-Spectrum Beta-Lactamase-Producing Shigella Species in Asia: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11111653. [PMID: 36421297 PMCID: PMC9687025 DOI: 10.3390/antibiotics11111653] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Shigellosis remains one of the leading causes of morbidity and mortality worldwide and is the second leading cause of diarrheal mortality among all age groups. However, the global emergence of antimicrobial-resistant Shigella strains, limiting the choice of effective drugs for shigellosis, has become the major challenge in the treatment of Shigella infections. The aim of this systematic review and meta-analysis was to provide an updated picture of the prevalence of antimicrobial-resistant Shigella species in Asia. A comprehensive and systematic search was performed on three electronic databases (PubMed, ScienceDirect and Scopus), in which 63 eligible studies published between 2010 and 2022 were identified. From our meta-analysis of proportions using a random-effects model, the overall prevalence of Shigella spp. in Asian patients was estimated to be 8.0% (95% CI: 5.5–10.5). The pooled prevalence rates of multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL)-producing Shigella strains were 68.7% (95% CI: 59.9–77.5) and 23.9% (95% CI: 12.9–34.8), respectively. Concerning recommended antimicrobial drugs for Shigella, the prevalence of resistance was highest for ciprofloxacin (29.8%) and azithromycin (29.2%), followed by ceftriaxone (23.8%), in spite of their importance as first- and second-line treatments for shigellosis. In contrast, resistance to carbapenems, such as ertapenem (0.0%), imipenem (0.1%) and meropenem (0.0%), was almost non-existent among the 49 tested antibiotics. The significantly high prevalence estimation suggests that the multidrug-resistant Shigella is a pressing threat to public health worthy of careful and justified interventions. Effective antibiotic treatment strategies, which may lead to better outcomes for the control and treatment of shigellosis in Asia, are essential.
Collapse
|
4
|
Emergence of azithromycin and third-generation cephalosporins resistant Shigella isolated from Iranian children. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Antimicrobial Resistance of Shigella flexneri in Pakistani Pediatric Population Reveals an Increased Trend of Third-Generation Cephalosporin Resistance. Curr Microbiol 2022; 79:118. [DOI: 10.1007/s00284-022-02805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 02/07/2022] [Indexed: 11/03/2022]
|
6
|
Association of Serotype With Antimicrobial Resistance Patterns Among Shigella flexneri Isolates From Pakistan: The Importance of Serotype 2b. Pediatr Infect Dis J 2020; 39:e352-e358. [PMID: 33021590 DOI: 10.1097/inf.0000000000002791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Shigella flexneri is an emerging threat in low socioeconomic countries including Pakistan. No previous data is available on the association between S. flexneri serotypes and antimicrobial resistance in Pakistan. OBJECTIVES The objective of the present study was to assess the association between serotypes and antimicrobial resistance patterns among S. flexneri isolated from clinical and nonclinical samples. METHODS A total of 199 S. flexneri isolates were subjected to molecular serotyping and antibiotic resistance. RESULTS The most prevalent S. flexneri serotype was 2b (38%) followed by 1b (24%), 7a (20%), 2a (11%), 1d (5%) and Y (2%). The phylogenetic reconstruction showed 12 clades among which the clades II, III, V, VIII, IX and XI have consisted of serotypes that were found both in human population and environment samples. A high level of multidrug resistance (MDR) was observed in serotype 2b (37.68%) followed by 1b (19.5%) and 7a (19.5%), 2a (11.5%), 1d (5%) and Y (2%). All isolates of serotype 2b showed high level of resistance to amoxicillin/clavulanic acid (100%) followed by quinolone (74.6%) and trimethoprim-sulfamethoxazole (54.6%). Interestingly, none of the serotype was resistant to piperacillin-tazobactam, imipenem and amikacin. The most frequently detected resistance genes among serotype 2b were blaOXA (100%) followed by qnrS (88%), cat (81%) and sul2 (63%). CONCLUSION The most frequent S. flexneri serotype was 2b while 1d and Y was first time reported in Pakistan. High frequency of MDR serotypes of S. flexneri is a serious threat in diarrhea endemic regions and thus require urgent strategies for its continuous monitoring and prevention.
Collapse
|
7
|
Song Y, Sun M, Feng L, Liang X, Song X, Mu G, Tuo Y, Jiang S, Qian F. Antibiofilm Activity of Lactobacillus plantarum 12 Exopolysaccharides against Shigella flexneri. Appl Environ Microbiol 2020; 86:e00694-20. [PMID: 32444475 PMCID: PMC7376565 DOI: 10.1128/aem.00694-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
In developing countries, Shigella flexneri is the most common enteric pathogen causing bacillary dysentery. Biofilm formation by S. flexneri can cause the emergence of antibiotic-resistant strains, which poses serious threats to food safety and human health. In this study, the effects of Lactobacillus plantarum 12 exopolysaccharides (L-EPSs) and S. flexneri exopolysaccharides (S-EPSs) on S. flexneri CMCC51574 biofilm formation were investigated. The results showed that L-EPS could decrease polysaccharide production in the extracellular polymeric matrix of S. flexneri and inhibit biofilm formation by S. flexneri L-EPS could decrease the minimum biofilm elimination concentration (MBEC) of antibiotics against S. flexneri biofilm and inhibit S. flexneri adhesion to and invasion into HT-29 cell monolayers, which might be ascribed to S. flexneri biofilm disturbance by L-EPS. In contrast, S-EPS exhibited the opposite effects compared to L-EPS. The monosaccharide composition analysis showed that L-EPS was composed of mannose, glucuronic acid, galactosamine, glucose, galactose, and xylose, with the molar ratio of 32.26:0.99:1.79:5.63:0.05:4.07, while S-EPS was composed of mannose, glucuronic acid, galactosamine, glucose, and galactose, with the molar ratio of 25.43:2.28:7.13:5.35. L-EPS was separated into the neutral polysaccharide L-EPS 1-1 and the acidic polysaccharide L-EPS 2-1 by ion-exchange chromatography and gel chromatography. L-EPS 2-1 exerted higher antibiofilm activity than L-EPS 1-1. The antibiofilm activity of L-EPS might be associated with its structure.IMPORTANCES. flexneri is a widespread foodborne pathogen causing food contamination and responsible for food poisoning outbreaks related to various foods in developing countries. Not only has biofilm formation by S. flexneri been difficult to eliminate, but it has also increased the drug resistance of the strain. In the present study, it was demonstrated that L-EPSs secreted by Lactobacillus plantrum 12 could inhibit S. flexneri biofilm formation on, adhesion to, and invasion into HT-29 cells. Also, L-EPSs could decrease the minimum biofilm elimination concentration (MBEC) of the antibiotics used against S. flexneri biofilm. Therefore, L-EPSs were shown to be bioactive macromolecules with the potential ability to act against S. flexneri infections.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Lu Feng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Xue Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Xing Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| |
Collapse
|
8
|
Nisa I, Qasim M, Yasin N, Ullah R, Ali A. Shigella flexneri: an emerging pathogen. Folia Microbiol (Praha) 2020; 65:275-291. [PMID: 32026288 DOI: 10.1007/s12223-020-00773-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Shigella flexneri is a leading etiologic agent of diarrhea in low socioeconomic countries. Notably, various serotypes in S. flexneri are reported from different regions of the world. The precise approximations of illness and death owing to shigellosis are missing in low socioeconomic countries, although it is widespread in different regions. The inadequate statistics available reveal S. flexneri to be a significant food and waterborne pathogen. All over the world, different antibiotic-resistant strains of S. flexneri serotypes have been emerged especially multidrug-resistant strains. Recently, increased resistance was observed in cephalosporins (3rd generation), azithromycin, and fluoroquinolones. There is a need for a continuous surveillance study on antibiotic resistance that will be helpful in the update of the antibiogram. The shigellosis burden can be reduced by adopting preventive measures like delivery of safe drinking water, suitable sanitation, and development of an effective and inexpensive multivalent vaccine. This review attempts to provide the recent findings of S. flexneri related to epidemiology and the emergence of multidrug resistance.
Collapse
Affiliation(s)
- Iqbal Nisa
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Nusrat Yasin
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Rafi Ullah
- Bacteriology Laboratory Center of Microbiology and Bacteriology (CMB) Veterinary Research Institute, Peshawar, Pakistan
| | - Anwar Ali
- Bacteriology Laboratory Center of Microbiology and Bacteriology (CMB) Veterinary Research Institute, Peshawar, Pakistan
| |
Collapse
|
9
|
Ranjbar R, Farahani A. Shigella: Antibiotic-Resistance Mechanisms And New Horizons For Treatment. Infect Drug Resist 2019; 12:3137-3167. [PMID: 31632102 PMCID: PMC6789722 DOI: 10.2147/idr.s219755] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are a common cause of diarrheal disease and have remained an important pathogen responsible for increased rates of morbidity and mortality caused by dysentery each year around the globe. Antibiotic treatment of Shigella infections plays an essential role in reducing prevalence and death rates of the disease. However, treatment of these infections remains a challenge, due to the global rise in broad-spectrum resistance to many antibiotics. Drug resistance in Shigella spp. can result from many mechanisms, such as decrease in cellular permeability, extrusion of drugs by active efflux pumps, and overexpression of drug-modifying and -inactivating enzymes or target modification by mutation. Therefore, there is an increasing need for identification and evolution of alternative therapeutic strategies presenting innovative avenues against Shigella infections, as well as paying further attention to this infection. The current review focuses on various antibiotic-resistance mechanisms of Shigella spp. with a particular emphasis on epidemiology and new mechanisms of resistance and their acquisition, and also discusses the status of novel strategies for treatment of Shigella infection and vaccine candidates currently under evaluation in preclinical or clinical phases.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wang Y, Ma Q, Hao R, Zhang Q, Yao S, Han J, Ren B, Fan T, Chen L, Xu X, Qiu S, Yang H. Antimicrobial resistance and genetic characterization of Shigella spp. in Shanxi Province, China, during 2006-2016. BMC Microbiol 2019; 19:116. [PMID: 31142259 PMCID: PMC6542020 DOI: 10.1186/s12866-019-1495-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/20/2019] [Indexed: 11/11/2022] Open
Abstract
Background Shigella spp., facultative anaerobic bacilli of the family Enterobacteriaceae, are one of the most common causes of diarrheal diseases in human worldwide which have become a significant public health burden. So, we aimed to analyze the antimicrobial phenotypes and to elucidate the molecular mechanisms underlying resistance to cephalosporins and fluoroquinolones in Shigella isolates from patients with diarrhea in Shanxi Province. Results During 2006–2016, we isolated a total of 474 Shigella strains (including 337 S. flexneri and 137 S. sonnei). The isolates showed high rates of resistance to traditional antimicrobials, and 26, 18.1 and 3.0% of them exhibited resistance to cephalosporins, fluoroquinolones and co-resistance to cephalosporins and fluoroquinolones, respectively. Notably, 91.1% of these isolates, including 22 isolates that showed an ACTSuT profile, exhibited multidrug resistance (MDR). The resistance rates to cephalosporins in S. sonnei isolates were higher than those in S. flexneri. Conversely, the resistance rates to fluoroquinolones were considerably higher in S. flexneri isolates. Among the 123 cephalosporins-resistant isolates, the most common extended-spectrum beta-lactamase gene was blaTEM-1, followed by blaCTX-M, blaOXA-1, and blaSHV-12. Six subtypes of blaCTX-M were identified, blaCTX-M-14 (n = 36) and blaCTX-M-55 (n = 26) were found to be dominant. Of all the 86 isolates with resistance to fluoroquinolones and having at least one mutation (Ser83Leu, His211Tyr, or Asp87Gly) in the the quinolone resistance-determining regions of gyrA, 79 also had mutation of parC (Ser80Ile), whereas 7 contained plasmid-mediated quinolone resistance genes including qnrA, qnrB, qnrS, and aac(60)-Ib-cr. Furthermore, pulsed-field gel electrophoresis analysis (PFGE) showed a considerable genetic diversity in S. flexneri isolates. However, the S. sonnei isolates had a high genetic similarity. Conclusions Coexistence of diverse resistance genes causing the emergence and transmission of MDR might render the treatment of shigellosis difficult. Therefore, continuous surveillance might be needed to understand the actual disease burden and provide guidance for shigellosis. Electronic supplementary material The online version of this article (10.1186/s12866-019-1495-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Wang
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China
| | - Qiuxia Ma
- Oceanus Plus Medical Development Co., Ltd, Shanghai, China.,Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Ruie Hao
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China
| | - Qiuxiang Zhang
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China
| | - Suxia Yao
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China
| | - Jiting Han
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China
| | - Binzhi Ren
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China
| | - Ting Fan
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China
| | - Limin Chen
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, PLA, Beijing, China.
| | - Hongxia Yang
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China.
| |
Collapse
|
11
|
Beladi Ghannadi S, Ghane M, Babaeekhou L. Determination of Antibiotic Resistance Pattern and frequency of CTX-M, TEM, and SHV Β-Lactamase Encoding Genes among Shigella Isolates from Inpatients in Tehran, Iran. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.2.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
12
|
Liu H, Zhu B, Qiu S, Xia Y, Liang B, Yang C, Dong N, Li Y, Xiang Y, Wang S, Xie J, Mahe M, Sun Y, Song H. Dominant serotype distribution and antimicrobial resistance profile of Shigella spp. in Xinjiang, China. PLoS One 2018; 13:e0195259. [PMID: 29614121 PMCID: PMC5882154 DOI: 10.1371/journal.pone.0195259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 11/19/2022] Open
Abstract
Shigella represents one of the major diarrhea-inducing pathogens threatening public health, but its prevalence and antimicrobial resistance profile in Xinjiang Uygur Autonomous region, China, remains unclear. We conducted comprehensive investigation of Shigella serotype distribution and antimicrobial resistance pattern in Xinjiang, identifying 458 Shigella isolates between 2008 to 2014. Shigella flexneri was identified as predominant species, and several S. flexneri serotypes were isolated, including atypical serotypes 1c, 2c, and 4s. Dominant S. flexneri serotypes were 2a, 1b, 2b, and Xv, different from those generally dominant in China. A hybrid serotype pattern was observed, which included the major Chinese serotypes (2a, Xv) and those predominant in Pakistan (1b, 2b). Shigella sonnei was shown to have a lower frequency compared with that generally observed in China, but an increasing trend of infections associated with this pathogen was observed. Furthermore, a high frequency of drug resistance and different Shigella antimicrobial resistance patterns were demonstrated as well, including very severe resistance phenotypes, such as multidrug resistance and resistance to frontline antibiotics. Seventy-five cephalosporin-resistant Shigella isolates were frequently identified with the resistance determinants that can undergo horizontal transfer, such as blaOXA, blaTEM, blaCTX-M, and integrons, facilitating the development of cephalosporin resistance among Shigella subtypes. Additionally, genetic analyses demonstrated that all 86 quinolone-resistant S. flexneri isolates possess 3–4 mutation sites in quinolone resistance-determining regions, primarily contributing to their resistance to quinolone. However, S. sonnei isolates were not shown to be quinolone resistant. Co-resistance to cephalosporins and quinolones was detected in 17 S. flexneri isolates, and these isolates were additionally multidrug resistant and carried β-lactamase genes and quinolone-resistance determinants. As is demonstrated in this study, dominant serotypes of Shigella were distributed in unique trend with dangerous drug resistance patterns. Novel strategies are urgently required to prevent the development of drug resistance among diarrhea-inducing pathogens.
Collapse
Affiliation(s)
- Hongbo Liu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Binghua Zhu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Yidan Xia
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Beibei Liang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Chaojie Yang
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Nian Dong
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Yongrui Li
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Ying Xiang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Shan Wang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Jing Xie
- Institute of Disease Control and Prevention, PLA, Beijing, China
| | - Muti Mahe
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
- * E-mail: (HS); (YS); (MM)
| | - Yansong Sun
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- * E-mail: (HS); (YS); (MM)
| | - Hongbin Song
- Institute of Disease Control and Prevention, PLA, Beijing, China
- * E-mail: (HS); (YS); (MM)
| |
Collapse
|
13
|
Zamanlou S, Ahangarzadeh Rezaee M, Aghazadeh M, Ghotaslou R, Babaie F, Khalili Y. Characterization of integrons, extended-spectrum β-lactamases, AmpC cephalosporinase, quinolone resistance, and molecular typing of Shigella spp. from Iran. Infect Dis (Lond) 2018; 50:616-624. [PMID: 29595080 DOI: 10.1080/23744235.2018.1455222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
INTRODUCTION The wide distribution of extended-spectrum β-lactamase (ESBL) producing Shigella spp., along with the emergence of fluoroquinolone resistant isolates, is a serious threat to public health, posing a new challenge for the effective treatment of shigellosis. The purpose of this study was to determine the level of antimicrobial resistance, the presence of genes encoding resistance to cephalosporins, and plasmid-mediated quinolone resistance (PMQR) among the clinical isolates of Shigella spp. in Iran. MATERIALS AND METHODS A total of 142 Shigella isolates were collected from different parts of Iran. All of the cephalosporin resistant Shigella strains were selected based on ESBL and AmpC production. The presence of PMQR regions was assessed in ciprofloxacin-resistant isolates, and genetic relatedness in the isolates was determined. RESULTS Seventy-eight Shigella isolates were found to be resistant to extended-spectrum cephalosporin (ESC). The blaCTX-M15 was the most prevalent cephalosporinase. Four ESBL-producing isolates were also resistant to ciprofloxacin. Among the PMQR regions, aac(6')-lb-cr gene was the most prevalent, as it was seen in 83.3% of the ciprofloxacin resistant isolates, while qnrA was positive in 16.7%. Clonal relatedness showed a limited variety of clones was responsible for Shigella infection in the region studied. CONCLUSION Overall, our findings indicated that a large number of ESBL producing Shigella spp. were mediated mainly by blaCTX-M15. This study is the first report on ciprofloxacin-resistant ESBL-producing Shigella isolates from patients in Iran.
Collapse
Affiliation(s)
- Sajjad Zamanlou
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Microbiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,c Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Ahangarzadeh Rezaee
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Microbiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,d Infectious and Tropical Diseases Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Aghazadeh
- d Infectious and Tropical Diseases Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Reza Ghotaslou
- b Department of Microbiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farhad Babaie
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Younes Khalili
- b Department of Microbiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
14
|
Belotserkovsky I, Sansonetti PJ. Shigella and Enteroinvasive Escherichia Coli. Curr Top Microbiol Immunol 2018; 416:1-26. [PMID: 30218158 DOI: 10.1007/82_2018_104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shigella and enteroinvasive Escherichia coli (EIEC) are gram-negative bacteria responsible for bacillary dysentery (shigellosis) in humans, which is characterized by invasion and inflammatory destruction of the human colonic epithelium. Different EIEC and Shigella subgroups rose independently from commensal E. coli through patho-adaptive evolution that included loss of functional genes interfering with the virulence and/or with the intracellular lifestyle of the bacteria, as well as acquisition of genetic elements harboring virulence genes. Among the latter is the large virulence plasmid encoding for a type three secretion system (T3SS), which enables translocation of virulence proteins (effectors) from the bacterium directly into the host cell cytoplasm. These effectors enable the pathogen to subvert epithelial cell functions, promoting its own uptake, replication in the host cytosol, and dissemination to adjacent cells while concomitantly inhibiting pro-inflammatory cell death. Furthermore, T3SS effectors are directly involved in Shigella manipulation of immune cells causing their dysfunction and promoting cell death. In the current chapter, we first describe the evolution of the enteroinvasive pathovars and then summarize the overall knowledge concerning the pathogenesis of these bacteria, with a particular focus on Shigella flexneri. Subversion of host cell functions in the human gut, both epithelial and immune cells, by different virulence factors is especially highlighted.
Collapse
Affiliation(s)
- Ilia Belotserkovsky
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue Du Dr Roux, 75724 Cedex 15, Paris, France.
| | - Philippe J Sansonetti
- Microbiologie et Maladies Infectieuses, Collège de France, 11 Place Marcelin Berthelot, 75005, Paris, France
| |
Collapse
|
15
|
Zamanlou S, Rezaee MA, Aghazadeh M, Ghotaslou R, Nave HH, Khalili Y. Genotypic Diversity of Multidrug Resistant Shigella species from Iran. Infect Chemother 2018; 50:29-37. [PMID: 29637750 PMCID: PMC5895828 DOI: 10.3947/ic.2018.50.1.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/05/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In many developing countries, shigellosis is endemic and also occurs in epidemics and treatment of multidrug-resistant (MDR) isolates are important. The aims of this study were to determine the antimicrobial susceptibility, prevalence of class 1 and 2 integrons and the clonal relatedness of isolates. MATERIALS AND METHODS Antimicrobial susceptibility tests were performed by disc diffusion method. Polymerase chain reaction (PCR)-sequencing technique was employed for detection and characterization of integrons. The genetic relatedness was evaluated by using enterobacterial repetitive intergenic consensus (ERIC) PCR. RESULTS There was a high percentage of resistance to trimethoprim-sulfamethoxazole (TMP/SMX) (93.7%), ampicillin (AMP) (87.3%), streptomycin (STR) (84.5%) and tetracycline (TET) (78.9%). Multidrug resistant phenotype was seen in 95.1% of total isolates. Most common MDR profile was TMP/SMX/STR/AMP resistant pattern. Among the 142 Shigella spp. analyzed in this study, 28 isolates were positive for class 1 integron with two types of gene cassette arrays (dfrA17/aadA5 = 31.7% and dfrA7 = 3.8%). The class 2 integron was more frequently detected among the isolates (94.7%) with dfrA1/sat1/aadA1 (69.4%) and dfrA1/sat1 (30.6%) gene cassettes. ERIC-PCR results showed 6, 5, 4 and 3 main genotypes among S. flexneri, S. sonnei, S. boydii and S. dysenteriae isolates, respectively. CONCLUSIONS Our findings revealed that multidrug resistant Shigella species with high prevalence of class 2 integron were very common in Iran. In addition, ERIC-PCR patterns showed limited variety of clones are responsible for shigellosis in the region of the study.
Collapse
Affiliation(s)
- Sajjad Zamanlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian Social Security Organization, Emam Reza Hospital, Urmia, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Aghazadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Hosseini Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Younes Khalili
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian Social Security Organization, Emam Reza Hospital, Urmia, Iran
| |
Collapse
|
16
|
Zhu Z, Cao M, Zhou X, Li B, Zhang J. Epidemic characterization and molecular genotyping of Shigella flexneri isolated from calves with diarrhea in Northwest China. Antimicrob Resist Infect Control 2017; 6:92. [PMID: 28878891 PMCID: PMC5585892 DOI: 10.1186/s13756-017-0252-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The widespread presence of antibiotics resistance genes in pathogenic bacteria can cause enormous problems. Food animals are one of the main reservoirs of intestinal pathogens that pose a potential risk to human. Analyzing the epidemiological characteristics and resistance patterns of Shigella flexneri in calves is necessary for animal and human health. METHODS AND RESULTS A total of 54 Shigella flexneri isolates, including six serotypes (1a, 2a, 2b, 4a, 6 and Xv), were collected from 837 fecal samples obtained from 2014 to 2016. We performed pulsed-field gel electrophoresis (PFGE) and applied the restriction enzyme NotI to analyze the genetic relatedness among the 54 isolates and to categorize them into 31 reproducible and unique PFGE patterns. According to the results of antimicrobial susceptibility tests, all 26 Shigella flexneri 2a serotypes were resistant to cephalosporin and/or fluoroquinolones. The genes blaTEM-1 , blaOXA-1 , and blaCTX-M-14 were detected in 19 cephalosporin-resistant S. flexneri 2a isolates. Among 14 fluoroquinolone-resistant isolates, the aac(6')-Ib-cr gene was largely present in each strain, followed by qnrS (5). Only one ciprofloxacin-resistant isolate harbored the qepA gene. Sequencing the quinolone resistance determining regions (QRDRs) of the fluoroquinolone-resistant isolates revealed two point mutations in gyrA (S83 L, D87N/Y) and a single point mutation in parC (S80I). Interestingly, two gyrA (D87N/Y) strains were resistant to ciprofloxacin. CONCLUSIONS The current study enhances our knowledge of Shigella in cattle, although continual surveillance is necessary for the control of shigellosis. The high level of cephalosporin and/or fluoroquinolone resistance in Shigella warns us of a potential risk to human and animal health.
Collapse
Affiliation(s)
- Zhen Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, People's Republic of China
| | - Mingze Cao
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, People's Republic of China
| | - Xuzheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, People's Republic of China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, People's Republic of China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, People's Republic of China
| |
Collapse
|
17
|
Anandan S, Muthuirulandi Sethuvel DP, Gajendiren R, Verghese VP, Walia K, Veeraraghavan B. Molecular characterization of antimicrobial resistance in clinical Shigella isolates during 2014 and 2015: trends in South India. Germs 2017; 7:115-122. [PMID: 28932711 DOI: 10.18683/germs.2017.1116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/27/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Shigella species are an important cause of acute diarrheal disease worldwide. This study describes the prevalence of Shigella spp. serotypes and their resistance profile in Vellore, South India from 2014 to 2015. METHODS From 2014 to 2015, 338 Shigella strains were isolated from stool samples at Christian Medical College, Vellore, India. Identification and serotyping was carried out using standard protocols. Antimicrobial susceptibility testing was done against commonly used antibiotics. Multidrug resistance was detected in 157 isolates. A subset of 73 isolates was randomly characterized further for acquired antimicrobial resistance genes in this study. RESULTS The resistance profile of the study isolates varied by species and year. S. sonnei isolates were 100% resistant to all tested antibiotics in 2014, whereas in 2015, resistance was found for AMP-NAL-TAX-SXT-FIX. The resistance phenotypes among S. flexneri isolates for the year 2014 and 2015 were AMP-SXT-NAL-NOR-FIX-TAX and AMP-NAL-SXT-TAX-NOR-FIX respectively. Screening for antimicrobial resistance genes in S. flexneri found dhfr1A, sulII, blaOXA, blaTEM, blaCTX-M-1,qnrB, qnrS and AmpC genes while S. sonnei were found to have only dhfr1A, sulII, blaCTX-M-1 and qnrS genes respectively. Antimicrobial resistance genes were predominantly seen in AMP-SXT-NAL and AMP-SXT-NAL-NOR resistance phenotypes. CONCLUSION Shigella prevalence of 4.8% to 4.6% was documented between the years 2014 to 2015 in this study. We show evidence that resistance to commonly used antibiotics continues to increase among Shigella spp. in South India. The presence of qnrS and blaCTX-M-15 in the study isolates further indicates the threat of spreading resistance to quinolones and third-generation cephalosporins.
Collapse
Affiliation(s)
- Shalini Anandan
- MD, Department of Clinical Microbiology, Asha building, Christian Medical College, Ida scudder road, Vellore, 632004, India
| | | | - Revathi Gajendiren
- MSc, Department of Clinical Microbiology, Asha building, Christian Medical College, Ida scudder road, Vellore, 632004, India
| | - Valsan Philip Verghese
- MD, Department of Child Health, ISSCC building, Christian Medical College, Ida scudder road, Vellore, 632004, India
| | - Kamini Walia
- PhD, Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Balaji Veeraraghavan
- PhD, Department of Clinical Microbiology, Asha building, Christian Medical College, Ida scudder road, Vellore, 632004, India
| |
Collapse
|
18
|
A Waterborne Outbreak of Shigella sonnei with Resistance to Azithromycin and Third-Generation Cephalosporins in China in 2015. Antimicrob Agents Chemother 2017; 61:AAC.00308-17. [PMID: 28373192 DOI: 10.1128/aac.00308-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/20/2022] Open
Abstract
Here, we report for the first time a waterborne outbreak of Shigella sonnei in China in 2015. Eleven multidrug-resistant (MDR) S. sonnei isolates were recovered, showing high resistance to azithromycin and third-generation cephalosporins in particular, due to an mph(A)- and blaCTX-M-14-harboring IncB/O/K/Z group transmissible plasmid of 104,285 kb in size. Our study highlights the potential prevalence of the MDR outbreak of S. sonnei in China and its further dissemination worldwide with the development of globalization.
Collapse
|
19
|
Qin T, Bi R, Fan W, Kang H, Ma P, Gu B. Novel mutations in quinolone resistance-determining regions of gyrA, gyrB, parC and parE in Shigella flexneri clinical isolates from eastern Chinese populations between 2001 and 2011. Eur J Clin Microbiol Infect Dis 2016; 35:2037-2045. [PMID: 27620866 DOI: 10.1007/s10096-016-2761-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the prevalence of fluoroquinolone resistance and mechanisms of selected fluoroquinolone resistance in Shigella flexneri isolates. A total of 624 S. flexneri strains isolated between 2001 and 2011 in Jiangsu Province of China were analysed for their fluoroquinolone susceptibility. The quinolone resistance-determining region of gyrA, gyrB, parC and parE were amplified and sequenced. In general, 90.5 % of S. flexneri exhibited resistance to nalidixic acid. The mean norfloxacin resistance rate was 22.4 % during the 11 years from 2001 to 2011 (6.4 % from 2001 to 2005 and 36.8 % from 2006 to 2011). Sequencing of gyrA, gyrB, parC and parE genes of all S. flexneri isolates showed that the mutation rate was as high as 93.9 %. In addition, 91.8 % and 92.3 % of S. flexneri harboured mutations in gyrA and parC, respectively. About 35.2 % of S. flexneri isolates susceptible to nalidixic acid contained mutations. Meanwhile, mutations were detected in 91.2 % of norfloxacin-susceptible strains, and almost all S. flexneri isolates resistant to fluoroquinolone contained mutations. To the best of our knowledge, this is the first study reporting the occurrence of point mutations Asn57Lys and His80Pro in gyrA and Ala85Thr, Asp111His and Ser129Pro in parC. Emerging fluoroquinolone resistance with a significantly high mutation rate of the gyrA and parC genes in S. flexneri in Jiangsu Province deserves attention, and monitoring antibiotic susceptibility is important for the effective management of S. flexneri infections.
Collapse
Affiliation(s)
- T Qin
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China
| | - R Bi
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China
| | - W Fan
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China
| | - H Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - P Ma
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China. .,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - B Gu
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China. .,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|