1
|
Maeda T, Khurana S. Heterogeneity of Treatment Response to Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:143-161. [PMID: 37464120 DOI: 10.1007/978-3-031-32259-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The definition of asthma has evolved over the years with significant heterogeneity of the disease increasingly recognized. Complex gene and environment interactions result in different pheno-endotypes of asthma that respond differently to the same treatment. Multiple studies have revealed pharmacogenomic and endophenotypic factors that predict treatment response to standard therapies for asthma. Recent advances in biologic medications have enabled a more tailored approach to the care of patients with moderate to severe asthma, taking into consideration clinical traits and measurable biomarkers. This chapter will review heterogeneity in treatment response to different medication classes for asthma: inhaled and systemic corticosteroids, beta-2 agonists, leukotriene modifiers, muscarinic antagonists, macrolides, and biologics.
Collapse
Affiliation(s)
- Tetsuro Maeda
- University of Rochester School of Medicine and Dentistry, Division of Pulmonary and Critical Care Medicine, Rochester, NY, USA
| | - Sandhya Khurana
- University of Rochester School of Medicine and Dentistry, Division of Pulmonary and Critical Care Medicine, Rochester, NY, USA.
| |
Collapse
|
2
|
Zhao Y, Zhang X, Han C, Cai Y, Li S, Hu X, Wu C, Guan X, Lu C, Nie X. Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:1068. [PMID: 35887565 PMCID: PMC9316609 DOI: 10.3390/jpm12071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacogenetics research on leukotriene modifiers (LTMs) for asthma has been developing rapidly, although pharmacogenetic testing for LTMs is not yet used in clinical practice. We performed a systematic review and meta-analysis on the impact of pharmacogenomics on LTMs response. Studies published until May 2022 were searched using PubMed, EMBASE, and Cochrane databases. Pharmacogenomics/genetics studies of patients with asthma using LTMs with or without other anti-asthmatic drugs were included. Statistical tests of the meta-analysis were performed with Review Manager (Revman, version 5.4, The Cochrane Collaboration, Copenhagen, Denmark) and R language and environment for statistical computing (version 4.1.0 for Windows, R Core Team, Vienna, Austria) software. In total, 31 studies with 8084 participants were included in the systematic review and five studies were also used to perform the meta-analysis. Two included studies were genome-wide association studies (GWAS), which showed different results. Furthermore, none of the SNPs investigated in candidate gene studies were identified in GWAS. In candidate gene studies, the most widely studied SNPs were ALOX5 (tandem repeats of the Sp1-binding domain and rs2115819), LTC4S-444A/C (rs730012), and SLCO2B1 (rs12422149), with relatively inconsistent conclusions. LTC4S-444A/C polymorphism did not show a significant effect in our meta-analysis (AA vs. AC (or AC + CC): −0.06, 95%CI: −0.16 to 0.05, p = 0.31). AA homozygotes had smaller improvements in parameters pertaining to lung functions (−0.14, 95%CI: −0.23 to −0.05, p = 0.002) in a subgroup of patients with non-selective CysLT receptor antagonists and patients without inhaled corticosteroids (ICS) (−0.11, 95%CI: −0.14 to −0.08, p < 0.00001), but not in other subgroups. Variability exists in the pharmacogenomics of LTMs treatment response. Our meta-analysis and systematic review found that LTC4S-444A/C may influence the treatment response of patients taking non-selective CysLT receptor antagonists for asthma, and patients taking LTMs not in combination with ICS for asthma. Future studies are needed to validate the pharmacogenomic influence on LTMs response.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xinyi Zhang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Congxiao Han
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Yuchun Cai
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Sicong Li
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaowen Hu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Caiying Wu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaodong Guan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Christine Lu
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA;
| | - Xiaoyan Nie
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| |
Collapse
|
3
|
Asthma genomics and pharmacogenomics. Curr Opin Immunol 2020; 66:136-142. [PMID: 33171417 DOI: 10.1016/j.coi.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
In this review, we summarize recent published work interrogating the relationship between genetic variation or gene expression regulation across the genome and asthma or asthma treatment outcomes. This includes 11 genome-wide association studies of asthma phenotypes that collectively identified 64 novel loci; transcriptome-wide asthma association studies which identified genes involved in virus recognition, bacterial infection, lung tissue remodeling, eosinophilic and neutrophilic inflammation and genes in the chromosome 17q12 asthma susceptibility locus; and three epigenome-wide studies of asthma that had robust sample sizes and replicated findings. We also highlight pharmacogenomic studies of corticosteroids, bronchodilator response to albuterol and zileuton, although finding from these studies may still be preliminary due to their relatively small sample sizes and limited availability of replication cohorts.
Collapse
|
4
|
Rotroff DM. A Bioinformatics Crash Course for Interpreting Genomics Data. Chest 2020; 158:S113-S123. [PMID: 32658646 PMCID: PMC8176646 DOI: 10.1016/j.chest.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/11/2019] [Accepted: 03/09/2020] [Indexed: 10/23/2022] Open
Abstract
Reductions in genotyping costs and improvements in computational power have made conducting genome-wide association studies (GWAS) standard practice for many complex diseases. GWAS is the assessment of genetic variants across the genome of many individuals to determine which, if any, genetic variants are associated with a specific trait. As with any analysis, there are evolving best practices that should be followed to ensure scientific rigor and reliability in the conclusions. This article presents a brief summary for many of the key bioinformatics considerations when either planning or evaluating GWAS. This review is meant to serve as a guide to those without deep expertise in bioinformatics and GWAS and give them tools to critically evaluate this popular approach to investigating complex diseases. In addition, a checklist is provided that can be used by investigators to evaluate whether a GWAS has appropriately accounted for the many potential sources of bias and generally followed current best practices.
Collapse
Affiliation(s)
- Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
5
|
Genetic profiling for disease stratification in chronic obstructive pulmonary disease and asthma. Curr Opin Pulm Med 2020; 25:317-322. [PMID: 30762612 DOI: 10.1097/mcp.0000000000000568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In asthma and chronic obstructive pulmonary disease (COPD), the movement towards genetic profiling with a push towards 'personalized medicine' has been hindered by complex environment--gene interactions and lack of tools to identify clear causal genetic traits. In this review, we will discuss the need for genetic profiling in asthma and COPD, what methods are currently used in the clinics and the recent finding using new sequencing methods. RECENT FINDINGS Over the past 10-15 years, genome-wide association studies analysis of common variants has provide little in the way of new genetic profiling markers for asthma and COPD. Whole exome/genome sequencing has provided a new method to identify lowly abundant alleles, which might have a much higher impact. Although, low population numbers due to high costs has hindered early studies, recent studies have reached genome wide significance. SUMMARY The use of genetic profiling of COPD in the clinic is current limited to the identification of Alpha-1 antitrypsin deficiency, while being absent in asthma. Advances in sequencing technology provide new avenues to identify disease causes or therapy response altering variants that in the short-term will allow for the development of screening procedures for disease to identify patients at risk of developing asthma or COPD.
Collapse
|
6
|
Zhang E, Levin AM, Williams LK. How does race and ethnicity effect the precision treatment of asthma? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:337-356. [PMID: 33015363 DOI: 10.1080/23808993.2019.1690396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction Asthma is a common condition that affects large numbers of children and adults, yet the burden of disease is not equally distributed amongst groups. In the United States, African Americans and Puerto Ricans have higher rates of asthma and its complications when compared with European Americans. However, clinical trials and genetic studies have largely focused on the latter group. Areas covered Here we examine what is known regarding differences in asthma treatment response by race-ethnicity. We also review existing genetic studies related to the use of asthma medications, paying special attention to studies that included substantial numbers of non-white population groups. Publicly accessible search engines of the medical literature were queried using combinations of the terms asthma, race, ethnicity, pharmacogenomics, and pharmacogenetics, as well as the names of individual asthma medication classes. The list of articles reviewed was supplemented by bibliographies and expert knowledge. Expert opinion A substantial and coordinated effort is still needed to both identify and validate genetic biomarkers of asthma medication response, as currently there are no clinically actionable genetic markers available for this purpose. The path to identifying such markers in non-white populations is even more formidable, since these groups are underrepresented in existing data.
Collapse
Affiliation(s)
- Ellen Zhang
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
7
|
Trinh HKT, Lee SH, Cao TBT, Park HS. Asthma pharmacotherapy: an update on leukotriene treatments. Expert Rev Respir Med 2019; 13:1169-1178. [PMID: 31544544 DOI: 10.1080/17476348.2019.1670640] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Asthma is a chronic inflammatory disease of the airways with a large heterogeneity of clinical phenotypes. There has been increasing interest regarding the role of cysteinyl leukotriene (LT) and leukotriene receptor antagonists (LTRA) in asthma treatment.Areas covered: This review summarized the data (published in PubMed during 1984-2019) regarding LTRA treatment in asthma and LTs-related airway inflammation mechanisms. Involvement of LTs C4/D4/E4 has been demonstrated in the several aspects of airway inflammation and remodeling. Novel pathways related to LTE4, the most potent mediator, and its respective receptors have recently been studied. Antagonists against cysteinyl leukotriene receptor (CysLTR) type 1, including montelukast, pranlukast and zafirlukast, have been widely prescribed in clinical practices; however, some clinical trials have shown insignificant responses to LTRAs in adult asthmatics, while some phenotypes of adult asthma showed more favorable responses to LTRAs including aspirin-exacerbated respiratory disease, elderly asthma, asthma associated with smoking, obesity and allergic rhinitis.Expert opinion: Further investigations are needed to understand the role of LTs in airway inflammation and remodeling of the asthmatic airways. There is a lack of biomarkers to predict responsiveness to LTRA, especially in adult asthmatics. Besides CysLTR1 antagonists, targets aiming other LT pathways should be considered.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh city, Vietnam
| | - So-Hee Lee
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | | | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Department of Biomedicine, Ajou University, Suwon, South Korea
| |
Collapse
|
8
|
Farzan N, Vijverberg SJ, Kabesch M, Sterk PJ, Maitland-van der Zee AH. The use of pharmacogenomics, epigenomics, and transcriptomics to improve childhood asthma management: Where do we stand? Pediatr Pulmonol 2018; 53:836-845. [PMID: 29493882 DOI: 10.1002/ppul.23976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/01/2018] [Indexed: 01/11/2023]
Abstract
Asthma is a complex multifactorial disease and it is the most common chronic disease in children. There is a high variability in response to asthma treatment, even in patients with good adherence to maintenance treatment, and a correct inhalation technique. Distinct underlying disease mechanisms in childhood asthma might be the reason of this heterogeneity. A deeper knowledge of the underlying molecular mechanisms of asthma has led to the recent development of advanced and mechanism-based treatments such as biologicals. However, biologicals are recommended only for patients with specific asthma phenotypes who remain uncontrolled despite high dosages of conventional asthma treatment. One of the main unmet needs in their application is lack of clinically available biomarkers to individualize pediatric asthma management and guide treatment. Pharmacogenomics, epigenomics, and transcriptomics are three omics fields that are rapidly advancing and can provide tools to identify novel asthma mechanisms and biomarkers to guide treatment. Pharmacogenomics focuses on variants in the DNA, epigenomics studies heritable changes that do not involve changes in the DNA sequence but lead to alteration of gene expression, and transcriptomics investigates gene expression by studying the complete set of mRNA transcripts in a cell or a population of cells. Advances in high-throughput technologies and statistical tools together with well-phenotyped patient inclusion and collaborations between different centers will expand our knowledge of underlying molecular mechanisms involved in disease onset and progress. Furthermore, it could help to select and stratify appropriate therapeutic strategies for subgroups of patients and hopefully bring precision medicine to daily practice.
Collapse
Affiliation(s)
- Niloufar Farzan
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J Vijverberg
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Although currently available drugs to treat asthma are effective in most patients, a proportion of patients do not respond or experience side-effects; which is partly genetically determined. Pharmacogenetics is the study of how genetic variations influence drug response. In this review, we summarize prior results and recent studies in pharmacogenetics to determine if we can use genetic profiles for personalized treatment of asthma. RECENT FINDINGS The field of pharmacogenetics has moved from candidate gene studies in single populations toward genome-wide association studies and meta-analysis of multiple studies. New technologies have been used to enrich results, and an expanding number of genetic loci have been associated with therapeutic responses to asthma drugs. Prospective, genotype-stratified treatment studies have been conducted for β2-agonists, showing attenuated response in children carrying the Arg16 variant in the β2-adrenoreceptor gene. SUMMARY Although there has been much progress, many findings have not been replicated and currently known genetic loci only account for a fraction of variability in drug response. More research is necessary to translate into clinical practice. A polygenic predictive approach integrated in complex networks with other 'omics' technologies could aid to achieve this goal. Finally, to change clinical practice, studies that compare precision medicine with traditional medicine are needed.
Collapse
|
10
|
Dahlin A, Weiss ST. Genetic and Epigenetic Components of Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am 2017; 36:765-789. [PMID: 27712769 DOI: 10.1016/j.iac.2016.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) severity and its clinical phenotypes are characterized by genetic variation within pathways for arachidonic acid metabolism, inflammation, and immune responses. Epigenetic effects, including DNA methylation and histone protein modification, contribute to regulation of many genes that contribute to inflammatory states in AERD. The development of noninvasive, predictive clinical tests using data from genetic, epigenetic, pharmacogenetic, and biomarker studies will improve precision medicine efforts for AERD and asthma treatment.
Collapse
Affiliation(s)
- Amber Dahlin
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Sánchez-Martín A, García-Sánchez A, Isidoro-García M. Review on Pharmacogenetics and Pharmacogenomics Applied to the Study of Asthma. Methods Mol Biol 2017; 1434:255-72. [PMID: 27300544 DOI: 10.1007/978-1-4939-3652-6_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nearly one-half of asthmatic patients do not respond to the most common therapies. Evidence suggests that genetic factors may be involved in the heterogeneity in therapeutic response and adverse events to asthma therapies. We focus on the three major classes of asthma medication: β-adrenergic receptor agonist, inhaled corticosteroids, and leukotriene modifiers. Pharmacogenetics and pharmacogenomics studies have identified several candidate genes associated with drug response.In this chapter, the main pharmacogenetic and pharmacogenomic studies in addition to the future perspectives in personalized medicine will be reviewed. The ideal treatment of asthma would be a tailored approach to health care in which adverse effects are minimized and the therapeutic benefit for an individual asthmatic is maximized leading to a more cost-effective care.
Collapse
Affiliation(s)
- Almudena Sánchez-Martín
- Department of Pharmacy, University Hospital of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain
| | - Asunción García-Sánchez
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.,Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| | - María Isidoro-García
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain. .,Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain. .,Department of Medicine, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
12
|
Vijverberg SJH, Farzan N, Slob EMA, Neerincx AH, Maitland-van der Zee AH. Treatment response heterogeneity in asthma: the role of genetic variation. Expert Rev Respir Med 2017; 12:55-65. [PMID: 29115880 DOI: 10.1080/17476348.2018.1403318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Asthmatic patients show a large heterogeneity in response to asthma medication. Rapidly evolving genotyping technologies have led to the identification of various genetic variants associated with treatment outcomes. Areas covered: This review focuses on the current knowledge of genetic variants influencing treatment response to the most commonly used asthma medicines: short- and long-acting beta-2 agonists (SABA/LABA), inhaled corticosteroids (ICS) and leukotriene modifiers. This review shows that various genetic variants have been identified, but none are currently used to guide asthma treatment. One of the most promising genetic variants is the Arg16 variant in the ADRB2 gene to guide LABA treatment in asthmatic children. Expert commentary: Poor replication of initially promising results and the low fraction of variability accounted for by single genetic variants inhibit pharmacogenetic findings to reach the asthma clinic. Nevertheless, the identification of genetic variation influencing treatment response does provide more insights in the complex processes underlying response and might identify novel targets for treatment. There is a need to report measures of clinical validity, to perform precision-medicine guided trials, as well as to understand how genetic variation interacts with environmental factors. In addition, systems biology approaches might be able to show a more complete picture of these complex interactions.
Collapse
Affiliation(s)
- Susanne J H Vijverberg
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , The Netherlands
| | - Niloufar Farzan
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , The Netherlands
| | - Elise M A Slob
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , The Netherlands
| | - Anne H Neerincx
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , The Netherlands
| | - Anke H Maitland-van der Zee
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
13
|
Matera MG, Rinaldi B, Calzetta L, Cazzola M. Pharmacogenetic and pharmacogenomic considerations of asthma treatment. Expert Opin Drug Metab Toxicol 2017; 13:1159-1167. [PMID: 28992739 DOI: 10.1080/17425255.2017.1391215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Pharmacogenetic and pharmacogenomic approaches are already utilized in some areas, such as oncology and cardiovascular disease, for selecting appropriate patients and/or establishing treatment and dosing guidelines. This is not true in asthma although many patients have different responses to drug treatment due to genetic factors. Areas covered: Several genetic factors that affect the pharmacotherapeutic responses to asthma medications, such as β2-AR agonists, corticosteroids, and leukotriene modifiers and could contribute to significant between-person variability in response are described. Expert opinion: An expanding number of genetic loci have been associated with therapeutic responses to asthma drugs but the individual effect of one single-nucleotide polymorphism is partial. In fact, epigenetic changes can modify genetic effects in time-, environment-, and tissue-specific manners, genes interact together in networks, and nongenetic components such as environmental exposures, gender, nutrients, and lifestyle can significantly interact with genetics to determine the response to therapy. Therefore, well-designed randomized controlled trials or observational studies are now mandatory to define if response to asthma medications in individual patients can be improved by using pharmacogenetic predictors of treatment response. Meanwhile, routine implementation of pharmacogenetics and pharmacogenomics into clinical practice remains a futuristic, far-off challenge for many clinical practices.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- a Department of Experimental Medicine , University of Campania Luigi Vanvitelli , Naples , Italy
| | - Barbara Rinaldi
- a Department of Experimental Medicine , University of Campania Luigi Vanvitelli , Naples , Italy
| | - Luigino Calzetta
- b Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| | - Mario Cazzola
- b Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| |
Collapse
|
14
|
Petros Z, Lee MTM, Takahashi A, Zhang Y, Yimer G, Habtewold A, Schuppe-Koistinen I, Mushiroda T, Makonnen E, Kubo M, Aklillu E. Genome-Wide Association and Replication Study of Hepatotoxicity Induced by Antiretrovirals Alone or with Concomitant Anti-Tuberculosis Drugs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:207-216. [PMID: 28388302 DOI: 10.1089/omi.2017.0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug-induced hepatotoxicity (DIH) is a common adverse event that is associated with both antiretroviral (ARV) and anti-tuberculosis drugs (ATD). Moreover, the genetic variations predisposing ARV- and ARV-ATD-induced liver toxicity in African populations are not well investigated, despite the two diseases being the major global health problems in sub-Saharan Africa. We performed a genome-wide association study (GWAS) and replication study to identify the genetic variants linked to the risk of developing DIH due to ARV drugs alone, and ARV-ATD co-treatment in Ethiopian HIV-positive patients. Treatment-naïve newly diagnosed HIV patients (n = 719) with or without tuberculosis (TB) co-infection were enrolled prospectively and received efavirenz-based ARV therapy with or without rifampicin-based short course ATD, respectively. Whole-genome genotyping was performed by using the Illumina Omni Express Exome Bead Chip genotyping array with 951,117 single nucleotide polymorphisms (SNPs) on a total of 41 cases of DIH, and 452 people without DIH (treatment tolerants). The replication study was carried out for 100 SNPs with the lowest p-values (top SNPs) by using an independent cohort consisting of 18 DIH cases and 208 treatment tolerants. We identified a missense SNP rs199650082 (2756G→A, R919Q, p = 1.4 × 10-6, odds ratio [OR] = 18.2, 95% confidence interval [CI] = 7.1-46.9) in an endoplasmic reticulum to the nucleus signaling-1 (ERN1) gene on chromosome 17 to be associated with DIH in the ARV-only cohort. In the ARV-ATD co-treatment groups, rs4842407, a long intergenic noncoding RNAs (lincRNAs) transcript variant on chromosome 12, was associated with DIH (p = 5.3 × 10-7, OR = 5.4, 95% CI = 2.8-10.3). These genetic variants that are putatively associated with DIH due to ARV drugs alone and ARV-ATD co-treatment establish a foundation for future personalized medicine in people with HIV and TB and call for larger studies in independent populations.
Collapse
Affiliation(s)
- Zelalem Petros
- 1 Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan .,2 Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University , Addis Ababa, Ethiopia
| | - Ming Ta Michael Lee
- 1 Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Atsushi Takahashi
- 3 Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Yanfei Zhang
- 1 Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Getnet Yimer
- 2 Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University , Addis Ababa, Ethiopia
| | - Abiy Habtewold
- 2 Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University , Addis Ababa, Ethiopia
| | - Ina Schuppe-Koistinen
- 4 Department of Physiology and Pharmacology, Science for Life Laboratory, Karolinska Institutet , Stockholm, Sweden
| | - Taisei Mushiroda
- 5 Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Eyasu Makonnen
- 2 Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University , Addis Ababa, Ethiopia
| | - Michiaki Kubo
- 6 Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Eleni Aklillu
- 7 Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge C1:68 , KarolinskaInstitutet, Stockholm, Sweden
| |
Collapse
|
15
|
Isidoro-García M, Sánchez-Martín A, García-Sánchez A, Sanz C, García-Berrocal B, Dávila I. Pharmacogenetics and the treatment of asthma. Pharmacogenomics 2017; 18:1271-1280. [PMID: 28776467 DOI: 10.2217/pgs-2017-0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heterogeneity defines both the natural history of asthma as well as patient's response to treatment. Pharmacogenomics contribute to understand the genetic basis of drug response and thus to define new therapeutic targets or molecular biomarkers to evaluate treatment effectiveness. This review is initially focused on different genes so far involved in the pharmacological response to asthma treatment. Specific considerations regarding allergic asthma, the pharmacogenetics aspects of polypharmacy and the application of pharmacogenomics in new drugs in asthma will also be addressed. Finally, future perspectives related to epigenetic regulatory elements and the potential impact of systems biology in pharmacogenetics of asthma will be considered.
Collapse
Affiliation(s)
- María Isidoro-García
- Department of Clinical Biochemistry, Pharmacogenetics Unit, University Hospital of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Almudena Sánchez-Martín
- Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Pharmacy, Faculty of Medicine, University Hospital of Salamanca, Salamanca, Spain
| | - Asunción García-Sánchez
- Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Biomedical & Diagnostic Sciences, Faculty of Medicine, University of Salamanca, Spain
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Microbiology & Genetics, Faculty of Biology, University of Salamanca, Salamanca, Spain
| | - Belén García-Berrocal
- Department of Clinical Biochemistry, Pharmacogenetics Unit, University Hospital of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain
| | - Ignacio Dávila
- Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Biomedical & Diagnostic Sciences, Faculty of Medicine, University of Salamanca, Spain.,Department of Allergy, Faculty of Medicine, University Hospital of Salamanca, Salmanaca, Spain
| |
Collapse
|
16
|
Qiu W, Guo F, Glass K, Yuan GC, Quackenbush J, Zhou X, Tantisira KG. Differential connectivity of gene regulatory networks distinguishes corticosteroid response in asthma. J Allergy Clin Immunol 2017; 141:1250-1258. [PMID: 28736268 DOI: 10.1016/j.jaci.2017.05.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/02/2017] [Accepted: 05/03/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Variations in drug response between individuals have prevented us from achieving high drug efficacy in treating many complex diseases, including asthma. Genetics plays an important role in accounting for such interindividual variations in drug response. However, systematic approaches for addressing how genetic factors and their regulators determine variations in drug response in asthma treatment are lacking. OBJECTIVE We sought to identify key transcriptional regulators of corticosteroid response in asthma using a novel systems biology approach. METHODS We used Passing Attributes between Networks for Data Assimilations (PANDA) to construct the gene regulatory networks associated with good responders and poor responders to inhaled corticosteroids based on a subset of 145 white children with asthma who participated in the Childhood Asthma Management Cohort. PANDA uses gene expression profiles and published relationships among genes, transcription factors (TFs), and proteins to construct the directed networks of TFs and genes. We assessed the differential connectivity between the gene regulatory network of good responders versus that of poor responders. RESULTS When compared with poor responders, the network of good responders has differential connectivity and distinct ontologies (eg, proapoptosis enriched in network of good responders and antiapoptosis enriched in network of poor responders). Many of the key hubs identified in conjunction with clinical response are also cellular response hubs. Functional validation demonstrated abrogation of differences in corticosteroid-treated cell viability following siRNA knockdown of 2 TFs and differential downstream expression between good responders and poor responders. CONCLUSIONS We have identified and validated multiple TFs influencing asthma treatment response. Our results show that differential connectivity analysis can provide new insights into the heterogeneity of drug treatment effects.
Collapse
Affiliation(s)
- Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Guo Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Mass; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Mass; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
17
|
Vijverberg SJ, Pijnenburg MW, Hövels AM, Koppelman GH, Maitland-van der Zee AH. The need for precision medicine clinical trials in childhood asthma: rationale and design of the PUFFIN trial. Pharmacogenomics 2017; 18:393-401. [PMID: 28244806 DOI: 10.2217/pgs-2016-0174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A 'one-size fits all'-approach does not fit all pediatric asthma patients. Current evidence suggests that in children with persistent asthma, ADRB2 genotype-guided treatment can improve treatment outcomes, yet this evidence is mainly derived from observational and genotype-stratified studies. Implementation of precision medicine-guided asthma treatment in clinical practice will only occur if randomized clinical trials can show that this approach will improve patient outcomes and is cost effective. In this paper, we will discuss why precision medicine trials are currently needed to improve childhood asthma management and present the rationale and design of the PUFFIN trial, that has been set up to address this need.
Collapse
Affiliation(s)
- Susanne Jh Vijverberg
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle W Pijnenburg
- Department of Pediatrics, Pediatric Pulmonology & Allergology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Anke M Hövels
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Science, Utrecht University, Utrecht, The Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology & Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma & COPD (GRIAC), Groningen, The Netherlands
| | | |
Collapse
|
18
|
Farzan N, Vijverberg SJH, Arets HG, Raaijmakers JAM, Maitland-van der Zee AH. Pharmacogenomics of inhaled corticosteroids and leukotriene modifiers: a systematic review. Clin Exp Allergy 2016; 47:271-293. [PMID: 27790783 DOI: 10.1111/cea.12844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Pharmacogenetics studies of anti-inflammatory medication of asthma have expanded rapidly in recent decades, but the clinical value of their findings remains limited. OBJECTIVE To perform a systematic review of pharmacogenomics and pharmacogenetics of inhaled corticosteroids (ICS) and leukotriene modifiers (LTMs) in patients with asthma. METHODS Articles published between 1999 and June 2015 were searched using PubMed and EMBASE. Pharmacogenomics/genetics studies of patients with asthma using ICS or LTMs were included if ≥1 of the following outcomes were studied: lung function, exacerbation rates or asthma symptoms. The studies of Single Nucleotide Polymorphisms (SNPs) that had been replicated at least once were assessed in more detail. RESULTS In total, 59 publications were included in the systematic review: 26 addressed LTMs (including two genomewide Genome-Wide association studies [GWAS]) and 33 addressed ICS (including four GWAS). None of the GWAS reported similar results. Furthermore, none of the SNPs assessed in candidate gene studies were identified in a GWAS. No consistent reports were found for candidate gene studies of LTMs. In candidate gene studies of ICS, the most consistent results were found for rs28364072 in FCER2. This SNP was associated with all three outcomes of poor response, and the largest effect was reported with the risk of exacerbations (hazard ratio, 3.95; 95% CI, 1.64-9.51). CONCLUSION AND CLINICAL RELEVANCE There is a lack of replication of genetic variants associated with poor ICS or LTM response. The most consistent results were found for the FCER2 gene [encoding for a low-affinity IgE receptor (CD23)] and poor ICS response. Larger studies with well-phenotyped patients are needed to assess the clinical applicability of ICS and LTM pharmacogenomics/genetics.
Collapse
Affiliation(s)
- N Farzan
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.,Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - S J H Vijverberg
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.,Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - H G Arets
- Department of Paediatric Pulmonology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - J A M Raaijmakers
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - A H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.,Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Thompson MD, Capra V, Clunes MT, Rovati GE, Stankova J, Maj MC, Duffy DL. Cysteinyl Leukotrienes Pathway Genes, Atopic Asthma and Drug Response: From Population Isolates to Large Genome-Wide Association Studies. Front Pharmacol 2016; 7:299. [PMID: 27990118 PMCID: PMC5131607 DOI: 10.3389/fphar.2016.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/24/2016] [Indexed: 02/05/2023] Open
Abstract
Genetic variants associated with asthma pathogenesis and altered response to drug therapy are discussed. Many studies implicate polymorphisms in genes encoding the enzymes responsible for leukotriene synthesis and intracellular signaling through activation of seven transmembrane domain receptors, such as the cysteinyl leukotriene 1 (CYSLTR1) and 2 (CYSLTR2) receptors. The leukotrienes are polyunsaturated lipoxygenated eicosatetraenoic acids that exhibit a wide range of pharmacological and physiological actions. Of the three enzymes involved in the formation of the leukotrienes, arachidonate 5 lipoxygenase 5 (ALOX5), leukotriene C4 synthase (LTC4S), and leukotriene hydrolase (LTA4H) are all polymorphic. These polymorphisms often result in variable production of the CysLTs (LTC4, LTD4, and LTE4) and LTB4. Variable number tandem repeat sequences located in the Sp1-binding motif within the promotor region of the ALOX5 gene are associated with leukotriene burden and bronchoconstriction independent of asthma risk. A 444A > C SNP polymorphism in the LTC4S gene, encoding an enzyme required for the formation of a glutathione adduct at the C-6 position of the arachidonic acid backbone, is associated with severe asthma and altered response to the CYSLTR1 receptor antagonist zafirlukast. Genetic variability in the CysLT pathway may contribute additively or synergistically to altered drug responses. The 601 A > G variant of the CYSLTR2 gene, encoding the Met201Val CYSLTR2 receptor variant, is associated with atopic asthma in the general European population, where it is present at a frequency of ∼2.6%. The variant was originally found in the founder population of Tristan da Cunha, a remote island in the South Atlantic, in which the prevalence of atopy is approximately 45% and the prevalence of asthma is 36%. In vitro work showed that the atopy-associated Met201Val variant was inactivating with respect to ligand binding, Ca2+ flux and inositol phosphate generation. In addition, the CYSLTR1 gene, located at Xq13-21.1, has been associated with atopic asthma. The activating Gly300Ser CYSLTR1 variant is discussed. In addition to genetic loci, risk for asthma may be influenced by environmental factors such as smoking. The contribution of CysLT pathway gene sequence variants to atopic asthma is discussed in the context of other genes and environmental influences known to influence asthma.
Collapse
Affiliation(s)
- Miles D Thompson
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La JollaCA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONCanada
| | - Valerie Capra
- Department of Health Sciences, San Paolo Hospital, Università degli Studi di Milano Milano, Italy
| | - Mark T Clunes
- Department of Physiology/Neuroscience, School of Medicine, Saint George's University Saint George's, Grenada
| | - G E Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milano, Italy
| | - Jana Stankova
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke QC, Canada
| | - Mary C Maj
- Department of Biochemistry, School of Medicine, Saint George's University Saint George's, Grenada
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| |
Collapse
|
20
|
Kittana N, Hattab S, Ziyadeh-Isleem A, Jaradat N, Zaid AN. Montelukast, current indications and prospective future applications. Expert Rev Respir Med 2016; 10:943-56. [PMID: 27485393 DOI: 10.1080/17476348.2016.1207533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Montelukast is recommended for the treatment of asthma, exercise -induced bronchospasm and allergic rhinitis. Several trials demonstrated potential therapeutic effects in other respiratory conditions, and different animal-model-based studies explored potential pharmacological actions in non-respiratory conditions. AREAS COVERED Clinical investigations on the pharmacotherapeutic effects of montelukast, in addition to in-vivo studies on animal models of non-respiratory diseases. The data discussed in this review were mainly obtained from clinical randomized trials, real-life studies, and studies based on animal models as approve of concept. As a condition, all of the discussed articles were published in journals cited by Pubmed. Expert commentary: The current clinical data are in favor of montelukast use in the management of chronic asthma as an add-on or alternative therapy to the inhaled corticosteroids. Further clinical trials are required to confirm the effectiveness and feasibility of montelukast for the treatment of conditions other than the current clinical indications.
Collapse
Affiliation(s)
- Naim Kittana
- a Division of Pharmacology and Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| | - Suhaib Hattab
- a Division of Pharmacology and Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| | - Azza Ziyadeh-Isleem
- a Division of Pharmacology and Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| | - Nidal Jaradat
- b Division of Pharmaceutical Chemistry and Technology, Department of Pharmacy, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| | - Abdel-Naser Zaid
- b Division of Pharmaceutical Chemistry and Technology, Department of Pharmacy, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| |
Collapse
|
21
|
Guo DD, Zheng XR. [Research advances in gene polymorphisms in biological pathways of drugs for asthma]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:567-573. [PMID: 27324549 PMCID: PMC7389084 DOI: 10.7499/j.issn.1008-8830.2016.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/05/2016] [Indexed: 06/06/2023]
Abstract
The studies on gene polymorphisms in biological pathways of the drugs for the treatment of asthma refer to the studies in which pharmacogenetic methods, such as genome-wide association studies, candidate gene studies, genome sequencing, admixture mapping analysis, and linkage disequilibrium, are used to identify, determine, and repeatedly validate the effect of one or more single nucleotide polymorphisms on the efficacy of drugs. This can provide therapeutic strategies with optimal benefits, least side effects, and lowest costs to patients with asthma, and thus realize individualized medicine. The common drugs for asthma are β2 receptor agonists, glucocorticoids, and leukotriene modifiers. This article reviews the research achievements in polymorphisms in biological pathways of the common drugs for asthma, hoping to provide guidance for pharmacogenetic studies on asthma in future and realize individualized medicine for patients with asthma soon.
Collapse
Affiliation(s)
- Dan-Dan Guo
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | |
Collapse
|
22
|
Abstract
Leukotrienes (LTs) are a family of inflammatory mediators including LTA4, LTB4, LTC4, LTD4, and LTE4. By competitive binding to the cysteinyl LT1 (CysLT1) receptor, LT receptor antagonist drugs, such as montelukast, zafirlukast, and pranlukast, block the effects of CysLTs, improving the symptoms of some chronic respiratory diseases, particularly bronchial asthma and allergic rhinitis. We reviewed the efficacy of antileukotrienes in upper airway inflammatory diseases. An update on the use of antileukotrienes in upper airway diseases in children and adults is presented with a detailed literature survey. Data on LTs, antileukotrienes, and antileukotrienes in chronic rhinosinusitis and nasal polyps, asthma, and allergic rhinitis are presented. Antileukotriene drugs are classified into two groups: CysLT receptor antagonists (zafirlukast, pranlukast, and montelukast) and LT synthesis inhibitors (5-lipoxygenase inhibitors such as zileuton, ZD2138, Bay X 1005, and MK-0591). CysLTs have important proinflammatory and profibrotic effects that contribute to the extensive hyperplastic rhinosinusitis and nasal polyposis (NP) that characterise these disorders. Patients who receive zafirlukast or zileuton tend to show objective improvements in, or at least stabilisation of, NP. Montelukast treatment may lead to clinical subjective improvement in NP. Montelukast treatment after sinus surgery can lead to a significant reduction in eosinophilic cationic protein levels in serum, with a beneficial effect on nasal and pulmonary symptoms and less impact in NP. Combined inhaled corticosteroids and long-acting β-agonists treatments are most effective for preventing exacerbations among paediatric asthma patients. Treatments with medium- or high-dose inhaled corticosteroids, combined inhaled corticosteroids and LT receptor antagonists, and low-dose inhaled corticosteroids have been reported to be equally effective. Antileukotrienes have also been reported to be effective for allergic rhinitis.
Collapse
|