1
|
Anić P, Golubić Talić J, Božinović K, Dediol E, Mravak-Stipetić M, Grce M, Milutin Gašperov N. Methylation of Immune Gene Promoters in Oral and Oropharyngeal Cancer. Int J Mol Sci 2023; 24:ijms24097698. [PMID: 37175405 PMCID: PMC10178514 DOI: 10.3390/ijms24097698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The proportion of oral and oropharyngeal squamous cell carcinoma (OOSCC) that can be attributed to human papillomavirus (HPV) infection is growing nowadays. A potential factor indicating the occurrence of HPV-positive OSCC is a change in the degree of methylation of gene promoters that play a key role in the immune response. In this study, we investigated the difference in the methylation of EDARADD, GBP4, HAVCR2, HLA DPB1, IL12RB1, MARCO, and SIGLEC12 gene promoters in samples of healthy oral mucosa versus samples of oral and oropharyngeal cancer. The presence of HPV infection in samples was examined earlier. To determine the difference in methylation of those gene promotors, isolated and bisulfite-modified DNA was analysed by the methylation-specific PCR method. The investigated gene promoters were found to be more hypomethylated in the oral and oropharyngeal cancer samples in comparison to normal tissue. The proportion of unmethylated gene promoters was similar in HPV-positive and HPV-negative cancers, although the data should be confirmed on a larger set of samples. To conclude, in samples of healthy oral mucosa, the investigated gene promoters were found to be methylated in a high percentage (73.3% to 100%), while in oral and oropharyngeal cancer samples, they were methylated in a low percentage (11.1% to 37%), regardless of HPV infection.
Collapse
Affiliation(s)
- Petra Anić
- Research Department, Srebrnjak Children's Hospital, 10000 Zagreb, Croatia
| | | | - Ksenija Božinović
- Department of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Emil Dediol
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, 10000 Zagreb, Croatia
| | - Marinka Mravak-Stipetić
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Magdalena Grce
- Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | | |
Collapse
|
2
|
Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses 2021; 13:v13112234. [PMID: 34835040 PMCID: PMC8623401 DOI: 10.3390/v13112234] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs), which are small, double-stranded, circular DNA viruses infecting human epithelial cells, are associated with various benign and malignant lesions of mucosa and skin. Intensive research on the oncogenic potential of HPVs started in the 1970s and spread across Europe, including Croatia, and worldwide. Nowadays, the causative role of a subset of oncogenic or high-risk (HR) HPV types, led by HPV-16 and HPV-18, of different anogenital and head and neck cancers is well accepted. Two major viral oncoproteins, E6 and E7, are directly involved in the development of HPV-related malignancies by targeting synergistically various cellular pathways involved in the regulation of cell cycle control, apoptosis, and cell polarity control networks as well as host immune response. This review is aimed at describing the key elements in HPV-related carcinogenesis and the advances in cancer prevention with reference to past and on-going research in Croatia.
Collapse
|
3
|
Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol 2021; 157:103178. [PMID: 33279812 DOI: 10.1016/j.critrevonc.2020.103178] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) is a major gynecological problem in developing and underdeveloped countries. Despite the significant advancement in early detection and treatment modalities, several patients recur. Moreover, the molecular mechanisms responsible for CC recurrence remains obscure. The patients with CC recurrence often show poor prognosis and significantly high mortality rates. The clinical management of recurrent CC depends on treatment history, site, and extent of the recurrence. Owing to poor prognosis and limited treatment options, recurrent CC often presents a challenge to the clinicians. Several in vitro, in vivo, and patient studies have led to the identification of the critical molecular changes responsible for CC recurrence. Both aberrant genetic and epigenetic modifications leading to altered cell signaling pathways have been reported to impact CC recurrence. Researchers are currently trying to dissect the molecular pathways in CC and translate these findings for better management of disease. This article attempts to review the existing knowledge of disease relapse, accompanying challenges, and associated molecular players in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of OBGYN, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Milutin Gašperov N, Sabol I, Božinović K, Dediol E, Mravak-Stipetić M, Licastro D, Dal Monego S, Grce M. DNA Methylome Distinguishes Head and Neck Cancer from Potentially Malignant Oral Lesions and Healthy Oral Mucosa. Int J Mol Sci 2020; 21:ijms21186853. [PMID: 32961999 PMCID: PMC7554960 DOI: 10.3390/ijms21186853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
There is a strong need to find new, good biomarkers of head and neck squamous cell carcinoma (HNSCC) because of the bad prognoses and high mortality rates. The aim of this study was to identify the potential biomarkers in HNSCC that have differences in their DNA methylome and potentially premalignant oral lesions, in comparison to healthy oral mucosa. In this study, 32 oral samples were tested: nine healthy oral mucosae, 13 HNSCC, and 10 oral lesions for DNA methylation by the Infinium MethylationEPIC BeadChip. Our findings showed that a panel of genes significantly hypermethylated in their promoters or specific sites in HNSCC samples in comparison to healthy oral samples, which are mainly oncogenes, receptor, and transcription factor genes, or genes included in cell cycle, transformation, apoptosis, and autophagy. A group of hypomethylated genes in HNSCC, in comparison to healthy oral mucosa, are mainly involved in the host immune response and transcriptional regulation. The results also showed significant differences in gene methylation between HNSCC and potentially premalignant oral lesions, as well as differently methylated genes that discriminate between oral lesions and healthy mucosa. The given methylation panels point to novel potential biomarkers for early diagnostics of HNSCC, as well as potentially premalignant oral lesions.
Collapse
Affiliation(s)
- Nina Milutin Gašperov
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (K.B.)
- Correspondence: (N.M.G.); (M.G.)
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (K.B.)
| | - Ksenija Božinović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (K.B.)
| | - Emil Dediol
- Department of Maxillofacial Surgery, School of Medicine, Clinical Hospital Dubrava, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marinka Mravak-Stipetić
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Danilo Licastro
- ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano, 99, 34149 Trieste, Italy; (D.L.); (S.D.M.)
| | - Simeone Dal Monego
- ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano, 99, 34149 Trieste, Italy; (D.L.); (S.D.M.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (K.B.)
- Correspondence: (N.M.G.); (M.G.)
| |
Collapse
|
5
|
Rosendo-Chalma P, Antonio-Vejar V, Bigoni-Ordóñez GD, Patiño-Morales CC, Cano-García A, García-Carrancá A. CDH1 and SNAI1 are regulated by E7 from human papillomavirus types 16 and 18. Int J Oncol 2020; 57:301-313. [PMID: 32319591 DOI: 10.3892/ijo.2020.5039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/24/2019] [Indexed: 11/05/2022] Open
Abstract
A common characteristic of cancer types associated with viruses is the dysregulated expression of the CDH1 gene, which encodes E‑cadherin, in general by activation of DNA methyltransferases (Dnmts). In cervical cancer, E7 protein from high risk human papillomaviruses (HPVs) has been demonstrated to interact with Dnmt1 and histone deacetylase type 1 (HDAC1). The present study proposed that E7 may regulate the expression of CDH1 through two pathways: i) Epigenetic, including DNA methylation; and ii) Epigenetic‑independent, including the induction of negative regulators of CDH1 expression, such as Snail family transcriptional repressor Snai1 and Snai2. To test this hypothesis, HPV16‑ and HPV18‑positive cell lines were used to determine the methylation pattern of the CDH1 promoter and its expression in association with its negative regulators. Different methylation frequencies were identified in the CDH1 promoter in HeLa (88.24%) compared with SiHa (17.65%) and Ca Ski (0%) cell lines. Significant differences in the expression of SNAI1 were observed between these cell lines, and an inverse association was identified between the expression levels of SNAI1 and CDH1. In addition, suppressing E7 not only increased the expression of CDH1, but notably decreased the expression of SNAI1 and modified the methylation pattern of the CDH1 promoter. These results suggested that the expression of CDH1 was dependent on the expression of SNAI1 and was inversely associated with the expression of E7. The present results indicated that E7 from HPV16/18 regulated the expression of CDH1 by the two following pathways in which Snai1 is involved: i) Hypermethylation of the CDH1 promoter region and increasing expression of SNAI1, as observed in HeLa; and ii) Hypomethylation of the CDH1 promoter region and expression of SNAI1, as observed in SiHa. Therefore, the suppression of CDH1 and expression of SNAI1 may be considered to be biomarkers of metastasis in uterine cervical cancer.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), Mexico City 10450, Mexico
| | - Verónica Antonio-Vejar
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| | - Gabriele Davide Bigoni-Ordóñez
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| | - Carlos César Patiño-Morales
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| | - Amparo Cano-García
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC‑UAM), Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid 28029, Spain
| | - Alejandro García-Carrancá
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| |
Collapse
|
6
|
Na Rangsee N, Yanatatsaneejit P, Pisitkun T, Somparn P, Jintaridth P, Topanurak S. Host proteome linked to HPV E7-mediated specific gene hypermethylation in cancer pathways. Infect Agent Cancer 2020; 15:7. [PMID: 32025240 PMCID: PMC6998090 DOI: 10.1186/s13027-020-0271-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Human papillomavirus (HPV) infection causes around 90% of cervical cancer cases, and cervical cancer is a leading cause of female mortality worldwide. HPV-derived oncoprotein E7 participates in cervical carcinogenesis by inducing aberrant host DNA methylation. However, the targeting specificity of E7 methylation of host genes is not fully understood but is important in the down-regulation of crucial proteins of the hallmark cancer pathways. In this study, we aim to link E7-driven aberrations in the host proteome to corresponding gene promoter hypermethylation events in the hope of providing novel therapeutic targets and biomarkers to indicate the progression of cervical cancer. Methods HEK293 cells were transfected with pcDNA3.1-E7 plasmid and empty vector and subjected to mass spectrometry-based proteomic analysis. Down-regulated proteins (where relative abundance was determined significant by paired T-test) relevant to cancer pathways were selected as gene candidates for mRNA transcript abundance measurement by qPCR and expression compared with that in SiHa cells (HPV type 16 positive). Methylation Specific PCR was used to determine promoter hypermethylation in genes downregulated in both SiHa and transfected HEK293 cell lines. The FunRich and STRING databases were used for identification of potential regulatory transcription factors and the proteins interacting with transcription factor gene candidates, respectively. Results Approximately 400 proteins totally were identified in proteomics analysis. The transcripts of six genes involved in the host immune response and cell proliferation (PTMS, C1QBP, BCAP31, CDKN2A, ZMYM6 and HIST1H1D) were down-regulated, corresponding to proteomic results. Methylation assays showed four gene promoters (PTMS, C1QBP, BCAP31 and CDKN2A) were hypermethylated with 61, 55.5, 70 and 78% increased methylation, respectively. Those four genes can be regulated by the GA-binding protein alpha chain, specificity protein 1 and ETS-like protein-1 transcription factors, as identified from FunRich database predictions. Conclusions HPV E7 altered the HEK293 proteome, particularly with respect to proteins involved in cell proliferation and host immunity. Down-regulation of these proteins appears to be partly mediated via host DNA methylation. E7 possibly complexes with the transcription factors of its targeting genes and DNMT1, allowing methylation of specific target gene promoters.
Collapse
Affiliation(s)
- Nopphamon Na Rangsee
- 1Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | | | - Trairak Pisitkun
- 3Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Poorichaya Somparn
- 3Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand.,4Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Pornrutsami Jintaridth
- 5Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Supachai Topanurak
- 1Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
7
|
Bowden SJ, Kalliala I, Veroniki AA, Arbyn M, Mitra A, Lathouras K, Mirabello L, Chadeau-Hyam M, Paraskevaidis E, Flanagan JM, Kyrgiou M. The use of human papillomavirus DNA methylation in cervical intraepithelial neoplasia: A systematic review and meta-analysis. EBioMedicine 2019; 50:246-259. [PMID: 31732479 PMCID: PMC6921230 DOI: 10.1016/j.ebiom.2019.10.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Methylation of viral DNA has been proposed as a novel biomarker for triage of human papillomavirus (HPV) positive women at screening. This systematic review and meta-analysis aims to assess how methylation levels change with disease severity and to determine diagnostic test accuracy (DTA) in detecting high-grade cervical intra-epithelial neoplasia (CIN). METHODS We performed searches in MEDLINE, EMBASE and CENTRAL from inception to October 2019. Studies were eligible if they explored HPV methylation levels in HPV positive women. Data were extracted in duplicate and requested from authors where necessary. Random-effects models and a bivariate mixed-effects binary regression model were applied to determine pooled effect estimates. FINDINGS 44 studies with 8819 high-risk HPV positive women were eligible. The pooled estimates for positive methylation rate in HPV16 L1 gene were higher for high-grade CIN (≥CIN2/high-grade squamous intra-epithelial lesion (HSIL) (95% confidence interval (95%CI:72·7% (47·8-92·2))) vs. low-grade CIN (≤CIN1/low-grade squamous intra-epithelial lesion (LSIL) (44·4% (95%CI:16·0-74·1))). Pooled difference in mean methylation level was significantly higher in ≥CIN2/HSIL vs. ≤CIN1/LSIL for HPV16 L1 (11·3% (95%CI:6·5-16·1)). Pooled odds ratio of HPV16 L1 methylation was 5·5 (95%CI:3·5-8·5) for ≥CIN2/HSIL vs. ≤CIN1/LSIL (p < 0·0001). HPV16 L1/L2 genes performed best in predicting CIN2 or worse (pooled sensitivity 77% (95%CI:63-87), specificity 64% (95%CI:55-71), area under the curve (0·73 (95%CI:0·69-0·77)). INTERPRETATION Higher HPV methylation is associated with increased disease severity, whilst HPV16 L1/L2 genes demonstrated high diagnostic accuracy to detect high-grade CIN in HPV16 positive women. Direct clinical use is limited by the need for a multi-genotype and standardised assays. Next-generation multiplex HPV sequencing assays are under development and allow potential for rapid, automated and low-cost methylation testing. FUNDING NIHR, Genesis Research Trust, Imperial Healthcare Charity, Wellcome Trust NIHR Imperial BRC, European Union's Horizon 2020.
Collapse
Affiliation(s)
- Sarah J Bowden
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; West London Gynaecology Cancer Centre, Hammersmith Hospital, Imperial Healthcare NHS Trust, UK
| | - Ilkka Kalliala
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Finland
| | - Areti A Veroniki
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
| | - Marc Arbyn
- Unit of Cancer Epidemiology, Scientific Institute of Public Health, Brussels, Belgium
| | - Anita Mitra
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; West London Gynaecology Cancer Centre, Hammersmith Hospital, Imperial Healthcare NHS Trust, UK
| | - Kostas Lathouras
- West London Gynaecology Cancer Centre, Hammersmith Hospital, Imperial Healthcare NHS Trust, UK
| | - Lisa Mirabello
- Department of Clinical Genetics, National Institute of Health (NIH), Bethesda, MD, USA
| | - Marc Chadeau-Hyam
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK
| | | | - James M Flanagan
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK
| | - Maria Kyrgiou
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; West London Gynaecology Cancer Centre, Hammersmith Hospital, Imperial Healthcare NHS Trust, UK.
| |
Collapse
|
8
|
Zhou G, Chen X, Shen R, Xu J, Wang Y, Yu H. Apparent diffusion coefficients are closely related with high-risk human papilloma virus infection in cervical squamous cell carcinoma patients. Acta Radiol 2019; 60:1372-1379. [PMID: 30722670 DOI: 10.1177/0284185119828202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guoxing Zhou
- Department of Radiology, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Ru Shen
- Department of Radiology, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jun Xu
- Department of Radiology, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yibin Wang
- Department of Radiology, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hong Yu
- Department of Radiology, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
9
|
Kottaridi C, Leventakou D, Pouliakis A, Pergialiotis V, Chrelias G, Patsouri E, Zacharatou A, Panopoulou E, Damaskou V, Sioulas V, Chrelias C, Kalantaridou S, Panayiotides IG. Searching HPV genome for methylation sites involved in molecular progression to cervical precancer. J Cancer 2019; 10:4588-4595. [PMID: 31528222 PMCID: PMC6746133 DOI: 10.7150/jca.30081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Human Papilloma Virus has been considered as the main cause for cervical cancer. In this study we investigated epigenetic changes and especially methylation of specific sites of HPV genome. The main goal was to correlate methylation status with histological grade as well as to determine its accuracy in predicting the disease severity by establishing optimum methylation cutoffs. Methods: In total, sections from 145 cases genotyped as HPV16 were obtained from formalin- fixed, paraffin-embedded tissue of cervical biopsies, conization or hysterectomy specimens. Highly accurate pyrosequencing of bisulfite converted DNA, was used to quantify the methylation percentages of UTR promoter, enhancer and 5' UTR, E6 CpGs 494, 502, 506 and E7 CpGs 765, 780, 790. The samples were separated in different groupings based on the histological outcome. Statistical analysis was performed by SAS 9.4 for Windows and methylation cutoffs were identified by MATLAB programming language. Results: The most important methylation sites were at the enhancer and especially UTR 7535 and 7553 sites. Specifically for CIN3+ (i.e. HSIL or SCC) discrimination, a balanced sensitivity vs. specificity (68.1%, 66.2% respectively) with positive predictive value (PPV) and negative predictive value (NPV) (66.2%, 68.2% respectively) was achieved for UTR 7535 methylation of 6.1% cutoff with overall accuracy 67.1%, while for UTR 7553 a sensitivity 60.9%, specificity 69.0%, PPV=65.6%, NPV=64.5% and overall accuracy=65.0% at threshold 10.1% was observed. Conclusion: Viral HPV16 genome was found methylated in NF-1 binding sites of UTR in cases with high grade disease. Methylation percentages of E6 and E7 CpG sites were elevated at the cancer group.
Collapse
Affiliation(s)
- Christine Kottaridi
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Danai Leventakou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Abraham Pouliakis
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Vasileios Pergialiotis
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - George Chrelias
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Eugenia Patsouri
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Andriani Zacharatou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Eleni Panopoulou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Vasileia Damaskou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Vasileios Sioulas
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Charalambos Chrelias
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Sofia Kalantaridou
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Ioannis G Panayiotides
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| |
Collapse
|
10
|
Sun LL, Liu Y, Sun X, Pan L, Wu D, Wang YD. Limited Role of Promoter Methylation of MGMT and C13ORF18 in Triage of Low-Grade Squamous Intraepithelial Lesion. Chin Med J (Engl) 2018; 131:939-944. [PMID: 29664054 PMCID: PMC5912060 DOI: 10.4103/0366-6999.229896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Promoter methylation of MGMT and C13ORF18 has been confirmed as a potential biomarker for early diagnosis of cervical cancer. The aim of this study was to evaluate the performance of MGMT and C13ORF18 promoter methylation for triage of cytology screening samples and explore the potential mechanism. Methods Methylation-sensitive high-resolution melting was used to detect promoter methylation of MGMT and C13ORF18 in 124 cervical samples. High-risk human papillomavirus (HR-HPV) was detected by the Digene Hybrid Capture 2®. Gene methylation frequencies in relation to cervical intraepithelial neoplasia (CIN) were analyzed. Frequencies were compared by Chi-square tests. The expression of gene biomarkers and methylation regulators was analyzed by immunohistochemical staining, real-time fluorescence quantitative polymerase chain reaction, and Western blot. Results For triage of low-grade squamous intraepithelial lesion (LSIL), gene methylation increased specificity from 4.0% of HR-HPV detection to 30.8% of MGMT (χ2 = 9.873, P = 0.002) and to 50.0% of C13ORF18 (χ2 = 21.814, P = 0.001). For triage of atypical squamous cells of undetermined significance, HR-HPV detection had higher positive predictive value of 54.8%. Either MGMT or C13ORF18 methylation combined with HR-HPV increased the negative predictive value to 100.0% (χ2 = 9.757, P = 0.002). There was no relationship between MGMT and C13ORF18 expression and DNA methylation (χ2 = 0.776, P = 0.379 and χ2 = 1.411, P = 0.235, respectively). MBD2 protein level in cervical cancer was relatively lower than normal cervical tissue (t = 4.11, P = 0.006). Conclusions HR-HPV detection is the cornerstone for triage setting of CIN. Promoter methylation of MGMT and C13ORF18 plays a limited role in triage of LSIL. Promoter methylation of both genes may not be the causes of gene silence.
Collapse
Affiliation(s)
- Lu-Lu Sun
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Yuan Liu
- Department of Pathology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Lei Pan
- Department of Pathology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Dan Wu
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Yu-Dong Wang
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| |
Collapse
|
11
|
Wang XB, Cui NH, Liu XN, Ma JF, Zhu QH, Guo SR, Zhao JW, Ming L. Identification of DAPK1 Promoter Hypermethylation as a Biomarker for Intra-Epithelial Lesion and Cervical Cancer: A Meta-Analysis of Published Studies, TCGA, and GEO Datasets. Front Genet 2018; 9:258. [PMID: 30065752 PMCID: PMC6056635 DOI: 10.3389/fgene.2018.00258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Promoter hypermethylation in death-associated protein kinase 1 (DAPK1) gene has been long linked to cervical neoplasia, but the established results remained controversial. Here, we performed a meta-analysis to assess the associations of DAPK1 promoter hypermethylation with low-grade intra-epithelial lesion (HSIL), high-grade intra-epithelial lesion (HSIL), cervical cancer (CC), and clinicopathological features of CC. Methods: Published studies with qualitative methylation data were initially searched from PubMed, Web of Science, EMBASE, and China National Knowledge Infrastructure databases (up to March 2018). Then, quantitative methylation datasets, retrieved from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, were pooled to validate the results of published studies. Results: In a meta-analysis of 37 published studies, DAPK1 promoter hypermethylation progressively increased the risk of LSIL by 2.41-fold (P = 0.012), HSIL by 7.62-fold (P < 0.001), and CC by 23.17-fold (P < 0.001). Summary receiver operating characteristic curves suggested a potential diagnostic value of DAPK1 promoter hypermethylation in CC, with a large area-under-the-curve of 0.83, a high specificity of 97%, and a moderate sensitivity of 59%. There were significant impacts of DAPK1 promoter hypermethylation on histological type (odds ratio (OR) = 3.53, P < 0.001) and FIGO stage of CC (OR = 2.15, P = 0.003). Then, a pooled analysis of nine TCGA and GEO datasets, covering 13 CPG sites within DAPK1 promoter, identified eight CC-associated sites, six sites with diagnostic values for CC (pooled specificities: 74–90%; pooled sensitivities: 70–81%), nine loci associated with the histological type of CC, and all 13 loci with down-regulated effects on DAPK1 mRNA expression. Conclusion: The meta-analysis suggests that DAPK1 promoter hypermethylation is significantly associated with the disease severity of cervical neoplasia. DAPK1 methylation detection exhibits a promising ability to discriminate CC from cancer-free controls.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning-Hua Cui
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xia-Nan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Fen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing-Hua Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu-Ren Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Wei Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Wongwarangkana C, Wanlapakorn N, Chansaenroj J, Poovorawan Y. Retinoic acid receptor beta promoter methylation and risk of cervical cancer. World J Virol 2018; 7:1-9. [PMID: 29468136 PMCID: PMC5807892 DOI: 10.5501/wjv.v7.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of death in women worldwide, particularly in developing countries. Human papillomavirus has been reported as one of the key etiologic factors in cervical carcinoma. Likewise, epigenetic aberrations have ability to regulate cancer pathogenesis and progression. Recent research suggested that methylation has been detected already at precancerous stages, which methylation markers may have significant value in cervical cancer screening. The retinoic acid receptor beta (RARβ) gene, a potential tumor suppressor gene, is usually expressed in normal epithelial tissue. Methylation of CpG islands in the promoter region of the RARβ gene has been found to be associated with the development of cervical cancer. To investigate whether RARβ methylation is a potential biomarker that predicts the progression of invasive cancer, we reviewed 14 previously published articles related to RARβ methylation. The majority of them demonstrated that the frequency of RARβ promoter methylation was significantly correlated with the severity of cervical epithelium abnormalities. However, methylation of a single gene may not represent the best approach for predicting disease prognosis. Analyzing combinations of aberrant methylation of multiple genes may increase the sensitivity, and thus this approach may serve as a better tool for predicting disease prognosis.
Collapse
Affiliation(s)
- Chaninya Wongwarangkana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Liu G. CDH1 promoter methylation in patients with cervical carcinoma: a systematic meta-analysis with trial sequential analysis. Future Oncol 2017; 14:51-63. [PMID: 29237293 DOI: 10.2217/fon-2017-0267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM This study was performed to evaluate the correlation between CDH1 promoter methylation and cervical cancer. METHODS Trial sequential analysis was conducted to evaluate the required information size. RESULTS A total of 15 studies with 950 cervical cancers and 829 controls were identified. CDH1 promoter methylation was higher in cervical cancer than in cervical intraepithelial neoplasia lesions and normal cervical tissues. Subgroup analysis of ethnicity showed that CDH1 promoter methylation correlated with cervical cancer in Caucasians, but not in Asians. CDH1 promoter methylation was higher in cervical cancer cytology samples than in normal cytology samples. It was higher in squamous cell carcinoma than adenocarcinoma, but was not correlated with tumor stage, grade and overall survival. CONCLUSION CDH1 promoter methylation may be correlated with cervical cancer carcinogenesis, especially for Caucasians. It was associated with histological subtypes. Trial sequential analysis showed that more studies are needed.
Collapse
Affiliation(s)
- Guanyuan Liu
- Department of Gynaecology & Obstetrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, No. 8 Workers Stadium South Road, Beijing 100020, China
| |
Collapse
|
14
|
Cardoso MDFS, Castelletti CHM, Lima-Filho JLD, Martins DBG, Teixeira JAC. Putative biomarkers for cervical cancer: SNVs, methylation and expression profiles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:161-173. [PMID: 28927526 DOI: 10.1016/j.mrrev.2017.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
Cervical cancer is primarily caused by Human papillomavirus (HPV) infection, but other factors such as smoking habits, co-infections and genetic background, can also contribute to its development. Although this cancer is avoidable, it is the fourth most frequent type of cancer in females worldwide and can only be treated with chemotherapy and radical surgery. There is a need for biomarkers that will enable early diagnosis and targeted therapy for this type of cancer. Therefore, a systems biology pipeline was applied in order to identify potential biomarkers for cervical cancer, which show significant reports in three molecular aspects: DNA sequence variants, DNA methylation pattern and alterations in mRNA/protein expression levels. CDH1, CDKN2A, RB1 and TP53 genes were selected as putative biomarkers, being involved in metastasis, cell cycle regulation and tumour suppression. Other ten genes (CDH13, FHIT, PTEN, MLH1, TP73, CDKN1A, CACNA2D2, TERT, WIF1, APC) seemed to play a role in cervical cancer, but the lack of studies prevented their inclusion as possible biomarkers. Our results highlight the importance of these genes. However, further studies should be performed to elucidate the impact of DNA sequence variants and/or epigenetic deregulation and altered expression of these genes in cervical carcinogenesis and their potential as biomarkers for cervical cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Maria de Fátima Senra Cardoso
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil.
| | - Carlos Henrique Madeiros Castelletti
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Agronomic Institute of Pernambuco (IPA), Av. General San Martin 1371, Bongi, Recife - PE, 50761-000, Brazil
| | - José Luiz de Lima-Filho
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil
| | - Danyelly Bruneska Gondim Martins
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil
| | - José António Couto Teixeira
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Department of Biological Engineering, University of Minho (UM), Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
15
|
Molano M, Moreno-Acosta P, Morales N, Burgos M, Buitrago L, Gamboa O, Alvarez R, Garland SM, Tabrizi SN, Steenbergen RDM, Mejía JC. Association Between Type-specific HPV Infections and hTERT DNA Methylation in Patients with Invasive Cervical Cancer. Cancer Genomics Proteomics 2017; 13:483-491. [PMID: 27807071 DOI: 10.21873/cgp.20011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There exists limited information on the role of hTERT methylation, and its association with type-specific HPV infections in cervical cancer. MATERIALS AND METHODS Eighty-seven frozen samples were analyzed for type-specific HPV infection using a GP5+/GP6+ PCR-RLB assay (RLB). hTERT DNA methylation analysis was performed using a newly developed PCR-RLB-hTERT. RESULTS Ninety-three percent of samples were HPV-positive and fifteen different types were detected. hTERT methylation analysis of region 1 revealed no methylation in 78.8% of the samples and partial methylation in 21.2%. In region two, 68.2% showed no methylation and 31.8% showed a pattern of partial methylation. An association between the alpha 9 and alpha 7 species with a pattern of no methylation of hTERT in the region 1 was established (p=0.02 and p=0.03, respectively). CONCLUSION Differences in patterns of methylation of the hTERT core promoter [region 1 (nt -208 to -1) and region 2 (nt +1 to +104) relative to first ATG] are related to the HPV species present.
Collapse
Affiliation(s)
- Mónica Molano
- Research Group in Cancer Biology, Research Branch, National Cancer Institute, Bogotá, Colombia.,Research Group in Radiobiology Clinical, Molecular and Cellular, National Cancer Institute, Bogotá, Colombia.,Microbiology and Infection Diseases, The Royal Women´s Hospital, Melbourne, VIC, Australia
| | - Pablo Moreno-Acosta
- Research Group in Cancer Biology, Research Branch, National Cancer Institute, Bogotá, Colombia .,Research Group in Radiobiology Clinical, Molecular and Cellular, National Cancer Institute, Bogotá, Colombia
| | - Nicolás Morales
- Research Group in Cancer Biology, Research Branch, National Cancer Institute, Bogotá, Colombia
| | - Marcela Burgos
- Research Group in Cancer Biology, Research Branch, National Cancer Institute, Bogotá, Colombia
| | - Lina Buitrago
- Unit Group of Analysis, Research Branch, National Cancer Institute, Bogotá, Colombia
| | - Oscar Gamboa
- Research Group in Radiobiology Clinical, Molecular and Cellular, National Cancer Institute, Bogotá, Colombia.,Unit Group of Analysis, Research Branch, National Cancer Institute, Bogotá, Colombia
| | - Rayner Alvarez
- Research Group in Cancer Biology, Research Branch, National Cancer Institute, Bogotá, Colombia.,Research Group in Radiobiology Clinical, Molecular and Cellular, National Cancer Institute, Bogotá, Colombia
| | - Suzanne M Garland
- Microbiology and Infection Diseases, The Royal Women´s Hospital, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | - Sepehr N Tabrizi
- Microbiology and Infection Diseases, The Royal Women´s Hospital, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | | | - Juan Carlos Mejía
- Oncological Pathology Group, National Cancer Institute, Bogotá, Colombia
| |
Collapse
|
16
|
Senapati R, Senapati NN, Dwibedi B. Molecular mechanisms of HPV mediated neoplastic progression. Infect Agent Cancer 2016; 11:59. [PMID: 27933097 PMCID: PMC5123406 DOI: 10.1186/s13027-016-0107-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/05/2016] [Indexed: 12/15/2022] Open
Abstract
Human Papillomavirus is the major etiological agent in the development of cervical cancer but not a sufficient cause. Despite significant research, the underlying mechanisms of progression from a low-grade squamous intraepithelial lesion to high grade squamous intraepithelial lesion are yet to be understood. Deregulation of viral gene expression and host genomic instability play a central role in virus-mediated carcinogenesis. Key events such as viral integration and epigenetic modifications may lead to the deregulation of viral and host gene expression. This review has summarized the available literature to describe the possible mechanism and role of viral integration in mediating carcinogenesis. HPV integration begins with DNA damage or double strand break induced either by oxidative stress or HPV proteins and the subsequent steps are driven by the DNA damage responses. Inflammation and oxidative stress could be considered as cofactors in stimulating viral integration and deregulation of cellular and viral oncogenes during the progression of cervical carcinoma. All these events together with the host and viral genetic and epigenetic modifications in neoplastic progression have also been reviewed which may be relevant in identifying a new preventive therapeutic strategy. In the absence of therapeutic intervention for HPV-infected individuals, future research focus should be directed towards preventing and reversing of HPV integration. DNA damage response, knocking out integrated HPV sequences, siRNA approach, modulating the selection mechanism of cells harboring integrated genomes and epigenetic modifiers are the possible therapeutic targets.
Collapse
Affiliation(s)
- Rashmirani Senapati
- Virology Division, Regional Medical Research centre (ICMR), Nalco square, Chandrasekharpur, Bhubaneswar, 751023 Odisha India
| | | | - Bhagirathi Dwibedi
- Virology Division, Regional Medical Research centre (ICMR), Nalco square, Chandrasekharpur, Bhubaneswar, 751023 Odisha India
| |
Collapse
|
17
|
Rosca A, Anton G, Ene L, Iancu I, Temereanca A, Achim CL, Ruta SM. Immunoassay and molecular methods to investigate DNA methylation changes in peripheral blood mononuclear cells in HIV infected patients on cART. J Immunoassay Immunochem 2016; 38:299-307. [PMID: 27854146 PMCID: PMC5679203 DOI: 10.1080/15321819.2016.1260587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the influence of antiretroviral therapy on methylation markers, in a group of HIV infected, heavily treated patients. Immune and molecular methods were used to investigate potential changes in methylation profile in DNA isolated from peripheral blood mononuclear cells collected from antiretroviral-experienced HIV infected patients and healthy controls. The percentage of 5-methylcytosine was inversely correlated with proviral DNA and active replication while DNMT1 (p = 0.01) and DNMT3A (p = 0.004) independently correlated with active viral replication. DNMT3A expression increased with total treatment duration (p = 0.03), number of antiretroviral drugs ever used (p = 0.003), and cumulative exposure to protease inhibitors (p = 0.02) even in currently HIV undetectable patients.
Collapse
Affiliation(s)
- Adelina Rosca
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Gabriela Anton
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Luminita Ene
- c Infectious Diseases Department , Victor Babes Hospital for Infectious and Tropical Diseases , Bucharest , Romania
| | - Iulia Iancu
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Aura Temereanca
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Cristian L Achim
- d Department of Psychiatry , University of California , San Diego , California
| | - Simona M Ruta
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| |
Collapse
|
18
|
Luttmer R, De Strooper LMA, Steenbergen RDM, Berkhof J, Snijders PJF, Heideman DAM, Meijer CJLM. Management of high-risk HPV-positive women for detection of cervical (pre)cancer. Expert Rev Mol Diagn 2016; 16:961-74. [PMID: 27459506 DOI: 10.1080/14737159.2016.1217157] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Primary HPV-testing has been shown to provide a superior detection of women at risk of cervical (pre)cancer compared to cytology-based screening. However, as most high-risk HPV infections are harmless, additional triage testing of HPV-positive women is necessary to identify those with cervical (pre)cancer. In this paper, we compare the performance, advantages and limitations of clinically relevant available triage strategies for HPV-positive women. AREAS COVERED Many different colposcopy triage strategies, comprising both microscopy-based and molecular (virus/host-related) markers, have been suggested: Pap cytology, p16/Ki-67 dual-stained cytology, HPV16/18 genotyping, viral DNA methylation and host cell DNA methylation. Literature search was limited to triage strategies that have achieved at least phase 2 of the five-phase framework for biomarker development and studies including large cohorts (≥100 hrHPV-positive women). Triage markers were stratified by sample type (cervical scrape, self-collected sample) and by study population (screening, non-attendee, referral). Expert commentary: At present, repeat Pap cytology and Pap cytology combined with HPV16/18 genotyping are the only triage strategies that have been robustly shown to be ready for implementation. Other strategies such as p16/Ki-67 dual-stained cytology and host cell DNA methylation analysis, with or without additional HPV16/18 genotyping, are attractive options for the near future.
Collapse
Affiliation(s)
- Roosmarijn Luttmer
- a Department of Pathology , VU University Medical Center , Amsterdam , the Netherlands.,b Department of Obstetrics & Gynecology , Diakonessenhuis , Utrecht , the Netherlands
| | - Lise M A De Strooper
- a Department of Pathology , VU University Medical Center , Amsterdam , the Netherlands
| | | | - Johannes Berkhof
- c Department of Epidemiology & Biostatistics , VU University Medical Center , Amsterdam , the Netherlands
| | - Peter J F Snijders
- a Department of Pathology , VU University Medical Center , Amsterdam , the Netherlands
| | - Daniëlle A M Heideman
- a Department of Pathology , VU University Medical Center , Amsterdam , the Netherlands
| | - Chris J L M Meijer
- a Department of Pathology , VU University Medical Center , Amsterdam , the Netherlands
| |
Collapse
|
19
|
László B, Ferenczi A, Madar L, Gyöngyösi E, Szalmás A, Szakács L, Veress G, Kónya J. CpG methylation in human papillomavirus (HPV) type 31 long control region (LCR) in cervical infections associated with cytological abnormalities. Virus Genes 2016; 52:552-5. [PMID: 27098644 DOI: 10.1007/s11262-016-1338-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/06/2016] [Indexed: 01/19/2023]
Abstract
The mechanisms that regulate papillomavirus gene expression include DNA methylation. The transcription of papillomavirus oncogenes E6 and E7 is controlled by certain regulatory elements in the LCR, which include binding sites for the E2 protein, a viral regulator of oncogene expression. In HPV-31-infected exfoliated cervical cells, the CpG methylation of the entire LCR was determined by next-generation sequencing after bisulfite modification. Six of the 22 cases had methylated CpG sites in the HPV-31 LCR, including position 7479 and/or 7485, at the promoter distal E2 binding site, thus suggesting a potential regulatory mechanism for papillomavirus transcription.
Collapse
Affiliation(s)
- Brigitta László
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| | - Annamária Ferenczi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - László Madar
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Eszter Gyöngyösi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Anita Szalmás
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Levente Szakács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - György Veress
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - József Kónya
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| |
Collapse
|