1
|
Christiani E, Naumann N, Weiss C, Spiess B, Kleiner H, Fabarius A, Hofmann WK, Saussele S, Seifarth W. Gene Expression Pattern of ESPL1, PTTG1 and PTTG1IP Can Potentially Predict Response to TKI First-Line Treatment of Patients with Newly Diagnosed CML. Cancers (Basel) 2023; 15:cancers15092652. [PMID: 37174118 PMCID: PMC10177117 DOI: 10.3390/cancers15092652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The achievement of major molecular response (MMR, BCR::ABL1 ≤ 0.1% IS) within the first year of treatment with tyrosine kinase inhibitors (TKI) is a milestone in the therapeutic management of patients with newly diagnosed chronic myeloid leukemia (CML). We analyzed the predictive value of gene expression levels of ESPL1/Separase, PTTG1/Securin and PTTG1IP/Securin interacting protein for MMR achievement within 12 months. Relative expression levels (normalized to GUSB) of ESPL1, PTTG1 and PTTG1IP in white blood cells of patients (responders n = 46, non-responders n = 51) at the time of diagnosis were comparatively analyzed by qRT-PCR. 3D scatter plot analysis combined with a distance analysis performed with respect to a commonly calculated centroid center resulted in a trend to larger distances for non-responders compared to the responder cohort (p = 0.0187). Logistic regression and analysis of maximum likelihood estimates revealed a positive correlation of distance (cut-off) with non-achieving MMR within 12 months (p = 0.0388, odds ratio 1.479, 95%CI: 1.020 to 2.143). Thus, 10% of the tested non-responders (cut-off ≥ 5.9) could have been predicted already at the time of diagnosis. Future scoring of ESPL1, PTTG1 and PTTG1IP transcript levels may be a helpful tool in risk stratification of CML patients before initiation of TKI first = line treatment.
Collapse
Affiliation(s)
- Eva Christiani
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Birgit Spiess
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Helga Kleiner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Susanne Saussele
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
2
|
Chromosomal Instability in Chronic Myeloid Leukemia: Mechanistic Insights and Effects. Cancers (Basel) 2022; 14:cancers14102533. [PMID: 35626137 PMCID: PMC9140097 DOI: 10.3390/cancers14102533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
The most recent two decades have seen tremendous progress in the understanding and treatment of chronic myeloid leukemia, a disease defined by the characteristic Philadelphia chromosome and the ensuing BCR::ABL fusion protein. However, the biology of the disease extends beyond the Philadelphia chromosome into a nebulous arena of chromosomal and genetic instability, which makes it a genetically heterogeneous disease. The BCR::ABL oncoprotein creates a fertile backdrop for oxidative damage to the DNA, along with impairment of genetic surveillance and the favoring of imprecise error-prone DNA repair pathways. These factors lead to growing chromosomal instability, manifested as additional chromosomal abnormalities along with other genetic aberrations. This worsens with disease progression to accelerated and blast phase, and modulates responses to tyrosine kinase inhibitors. Treatment options that target the genetic aberrations that mitigate chromosome instability might be a potential area for research in patients with advanced phase CML.
Collapse
|
3
|
PEHLİVAN M, SERCAN HO. Megakaryoblast ve bazofil hücre tipine sahip Ph (+) KML hücre hatlarının Wnt ve Frizzled ilişkili gen ifadelerinin karşılaştırılması. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.795833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
4
|
Abstract
Separase is a large cysteine protease in eukaryotes and has crucial roles in many cellular processes, especially chromosome segregation during mitosis and meiosis, apoptosis, DNA damage repair, centrosome disengagement and duplication, spindle stabilization and elongation. It dissolves the cohesion between sister chromatids by cleaving one of the subunits of the cohesin ring for chromosome segregation. The activity of separase is tightly controlled at many levels, through direct binding of inhibitory proteins as well as posttranslational modification. Dysregulation of separase activity is linked to cancer and genome instability, making it a target for drug discovery. One of the best-known inhibitors of separase is securin, which has been identified in yeast, plants, and animals. Securin forms a tight complex with separase and potently inhibits its catalytic activity. Recent structures of the separase-securin complex have revealed the molecular mechanism for the inhibitory activity of securin. A segment of securin is bound in the active site of separase, thereby blocking substrate binding. Securin itself is not cleaved by separase as its binding mode is not compatible with catalysis. Securin also has extensive interactions with separase outside the active site, consistent with its function as a chaperone to stabilize this enzyme.
Collapse
Affiliation(s)
- Shukun Luo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
5
|
Spiess B, Kleiner H, Flach J, Fabarius A, Saussele S, Hofmann WK, Seifarth W. Separase activity distribution can be a marker of major molecular response and proliferation of CD34 + cells in TKI-treated chronic myeloid leukemia patients. Ann Hematol 2020; 99:991-1006. [PMID: 32253454 PMCID: PMC7196950 DOI: 10.1007/s00277-020-04007-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
Abstract
Separase, a cysteine endopeptidase, is a key player in mitotic sister chromatid separation, replication fork dynamics, and DNA repair. Aberrant expression and/or altered separase proteolytic activity are associated with aneuploidy, tumorigenesis, and disease progression. Since genomic instability and clonal evolution are hallmarks of progressing chronic myeloid leukemia (CML), we have comparatively examined separase proteolytic activity in TKI-treated chronic phase CML. Separase proteolytic activity was analyzed on single cell level in 88 clinical samples and in 14 healthy controls by a flow cytometric assay. In parallel, BCR-ABL1 gene expression and replication fork velocity were measured by qRT-PCR and DNA fiber assays, respectively. The separase activity distribution (SAD) value indicating the occurrence of MNCs with elevated separase proteolytic activity within samples was found to positively correlate with BCR-ABL1 gene expression levels and loss of MMR (relapse) throughout routine BCR-ABL1 monitoring. Analyses of CD34+ cells and MNCs fractionized by flow cytometric cell sorting according to their separase activity levels (H- and L-fractions) revealed that CD34+ cells with elevated separase activity levels (H-fractions) displayed enhanced proliferation/viability when compared with cells with regular (L-fraction) separase activity (mean 3.3-fold, p = 0.0011). BCR-ABL1 gene expression positivity prevailed in MNC H-fractions over L-fractions (42% vs. 8%, respectively). Moreover, expanding CD34+ cells of H-fractions showed decreased replication fork velocity compared with cells of L-fractions (p < 0.0001). Our data suggests an association between high separase activity, residual BCR-ABL1 gene expression, and enhanced proliferative capacity in hematopoietic cells within the leukemic niche of TKI-treated chronic phase CML.
Collapse
Affiliation(s)
- Birgit Spiess
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Hämatologie und Onkologie, III. Medizinische Klinik, Wissenschaftliches Labor, Universitätsklinikum Mannheim GmbH, Pettenkoferstraße 22, 68169, Mannheim, Germany.
| | - Helga Kleiner
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Susanne Saussele
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Xia T, Yang Y, Li G, Chang J, Li J, Ren F, Ren W, Wang H, Xu Z. T-cell blast crisis of chronic myelogenous leukemia presented with coexisting p210 and p190 BCR-ABL transcripts and t(10;11)(q11;p15). J Clin Lab Anal 2020; 34:e23241. [PMID: 32052899 PMCID: PMC7307355 DOI: 10.1002/jcla.23241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background Blast transformation of chronic myelogenous leukemia (CML) to T lymphoblastic lymphoma/acute lymphoblastic leukemia (T‐LBL/ALL) is rare, and the molecular mechanism is still unclear. Case report A 28‐year‐old woman who developed T‐ALL with coexpressing both p210 and p190 BCR‐ABL transcripts five years after the initial diagnosis of CML in chronic phase. The proliferation of bone marrow was extremely active with blast cells over 20%. Chromosome analysis revealed t(9;22)(q34;q11) and t(10;11)(q25;p15). Flow immunophenotyping showed that blasts expressed CD4, CD7, CD11b, CD38, CD34, CD33, and cCD3. Conclusion It is the first T‐cell blast of CML case with coexisting p210 and p190 as well as additional chromosome translocations. Through review this case and previous reports, we will reveal that CML patients with T‐lymphocyte transformation depend on potential molecular and pathological mechanism.
Collapse
Affiliation(s)
- Ting Xia
- The Haematology Department, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuchao Yang
- The Haematology Department, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoxia Li
- The Haematology Department, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianmei Chang
- The Haematology Department, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianlan Li
- The Haematology Department, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fanggang Ren
- The Haematology Department, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weixiao Ren
- The Haematology Department, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongwei Wang
- The Haematology Department, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Xu
- The Haematology Department, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Borges CDS, Ferreira AF, Almeida VH, Gomes FG, Berzoti-Coelho MG, Cacemiro MDC, Nunes NS, Figueiredo-Pontes LL, Simões BP, Castro FA, Monteiro RQ. Crosstalk between BCR-ABL and protease-activated receptor 1 (PAR1) suggests a novel target in chronic myeloid leukemia. Exp Hematol 2018; 66:50-62. [PMID: 30076949 DOI: 10.1016/j.exphem.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/19/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome, which generates the oncogene BCR-ABL1. Protease-activated receptor 1 (PAR1) is involved in tumor progression and angiogenesis. We have previously reported that PAR1 expression is elevated in human leukemias that display a more aggressive clinical behavior, including the blast crisis of CML. In this study, we analyzed the crosstalk between the oncoprotein BCR-ABL and PAR1 in CML. Leukemic cell lines transfected with the BCR-ABL1 oncogene showed significantly higher expression levels of PAR1 compared with that of wild-type counterparts. This phenomenon was reversed by treatment with tyrosine kinase inhibitors (TKIs). Conversely, treatment with the PAR1 antagonist SCH79797 inhibited BCR-ABL expression. The PAR1 antagonist induced apoptosis in a dose- and time-dependent manner. Higher vascular endothelial growth factor (VEGF) levels were observed in cells transfected with BCR-ABL1 than in their wild-type counterparts. VEGF expression was strongly inhibited after treatment with either TKIs or the PAR1 antagonist. Finally, we evaluated PAR1 expression in CML patients who were either in the blast or chronic phases and had either received TKI treatment or no treatment. A significant decrease in PAR1 expression was observed in treatment-responsive patients, as opposed to a significant increase in PAR1 expression levels in treatment-resistant patients. Patients classified as high risk according to the Sokal index showed higher PAR1 expression levels. Our results demonstrate the crosstalk between BCR-ABL and PAR1. These data may offer important insight into the development of new therapeutic strategies for CML.
Collapse
Affiliation(s)
- Camilla de S Borges
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline F Ferreira
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Vitor H Almeida
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fausto G Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Gabriela Berzoti-Coelho
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Maira da Costa Cacemiro
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Natalia S Nunes
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lorena L Figueiredo-Pontes
- Hematology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Belinda P Simões
- Hematology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fabíola A Castro
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Robson Q Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Ruppenthal S, Kleiner H, Nolte F, Fabarius A, Hofmann WK, Nowak D, Seifarth W. Increased separase activity and occurrence of centrosome aberrations concur with transformation of MDS. PLoS One 2018; 13:e0191734. [PMID: 29370237 PMCID: PMC5784974 DOI: 10.1371/journal.pone.0191734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/10/2018] [Indexed: 01/15/2023] Open
Abstract
ESPL1/separase, a cysteine endopeptidase, is a key player in centrosome duplication and mitotic sister chromatid separation. Aberrant expression and/or altered separase proteolytic activity are associated with centrosome amplification, aneuploidy, tumorigenesis and disease progression. Since centrosome alterations are a common and early detectable feature in patients with myelodysplastic syndrome (MDS) and cytogenetic aberrations play an important role in disease risk stratification, we examined separase activity on single cell level in 67 bone marrow samples obtained from patients with MDS, secondary acute myeloid leukemia (sAML), de novo acute myeloid leukemia (AML) and healthy controls by a flow cytometric separase activity assay. The separase activity distribution (SAD) value, a calculated measure for the occurrence of cells with prominent separase activity within the analyzed sample, was tested for correlation with the centrosome, karyotype and gene mutation status. We found higher SAD values in bone marrow cells of sAML patients than in corresponding cells of MDS patients. This concurred with an increased incidence of aberrant centrosome phenotypes in sAML vs. MDS samples. No correlation was found between SAD values and the karyotype/gene mutation status. During follow-up of four MDS patients we observed increasing SAD values after transformation to sAML, in two patients SAD values decreased during azacitidine therapy. Cell culture experiments employing MDS-L cells as an in vitro model of MDS revealed that treatment with rigosertib, a PLK1 inhibitor and therapeutic drug known to induce G2/M arrest, results in decreased SAD values. In conclusion, the appearance of cells with unusual high separase activity levels, as indicated by increased SAD values, concurs with the transformation of MDS to sAML and may reflect separase dysregulation potentially contributing to clonal evolution during MDS progression. Separase activity measurement may therefore be useful as a novel additional molecular marker for disease monitoring.
Collapse
Affiliation(s)
- Sabrina Ruppenthal
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| | - Helga Kleiner
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Saarbach J, Lindberg E, Folliet S, Georgeon S, Hantschel O, Winssinger N. Kinase-templated abiotic reaction. Chem Sci 2017; 8:5119-5125. [PMID: 28970898 PMCID: PMC5615226 DOI: 10.1039/c7sc01416c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/20/2017] [Indexed: 12/16/2022] Open
Abstract
Protein kinases are quintessential regulators of cellular function. Numerous pathologies are intimately linked to the dysregulated activity of a particular protein kinase. Herein we report a technology based on a proximity-induced chemical transformation that enables the detection and imaging of specific kinases. Using two probes that target the nucleotide-binding site and substrate binding site of a target kinase respectively, the reagents appended on the probes are brought within reactive distance thereby enabling the chemical transformation. The reaction used for sensing is a ruthenium-photocatalyzed reduction of a pyridinium immolative linker, which uncages a fluorophore (rhodamine). We demonstrate that this technology can be used to discriminate between closely related kinases with a high signal to noise ratio. We further demonstrate that the technology operates within the complexity of a cellular context with a good correlation between the level of kinase activity and fluorescence output.
Collapse
Affiliation(s)
- J Saarbach
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| | - E Lindberg
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| | - S Folliet
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| | - S Georgeon
- Swiss Institute for Experimental Cancer Research (ISREC) , NCCR Chemical Biology , School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - O Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC) , NCCR Chemical Biology , School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - N Winssinger
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| |
Collapse
|
10
|
Kumar R. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene. J Cell Biochem 2017; 118:1283-1299. [PMID: 27966791 DOI: 10.1002/jcb.25835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 118: 1283-1299, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India
| |
Collapse
|
11
|
Hehlmann R, Saußele S, Voskanyan A, Silver RT. Management of CML-blast crisis. Best Pract Res Clin Haematol 2016; 29:295-307. [PMID: 27839570 DOI: 10.1016/j.beha.2016.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/10/2016] [Indexed: 12/28/2022]
Abstract
Tyrosine kinase inhibitors (TKI) have moderately improved survival in BC, but a median survival of less than 1 year is still unsatisfactory. This article reviews the various tests required for diagnosis of BC, features at diagnosis, treatment modalities (intensive chemotherapy, TKI, allo-SCT and a selection of investigational agents), options of prevention and predictors of progression. The best prognosis is observed in patients that achieve a 2nd CP. Allo-SCT probably further improves prognosis of patients in 2nd CP. The choice of TKI should be directed by the mutation profile of the patient. BC can be prevented. A careful analysis of risk factors for progression may help. Current treatment options are combined in a concluding strategy for the management of BC.
Collapse
Affiliation(s)
- Rüdiger Hehlmann
- Medizinische Fakultät Mannheim, Universität Heidelberg, III. Medizinische Klinik, Pettenkoferstr. 22, 68169 Mannheim, Germany.
| | - Susanne Saußele
- Medizinische Fakultät Mannheim, Universität Heidelberg, III. Medizinische Klinik, Pettenkoferstr. 22, 68169 Mannheim, Germany.
| | - Astghik Voskanyan
- Medizinische Fakultät Mannheim, Universität Heidelberg, III. Medizinische Klinik, Pettenkoferstr. 22, 68169 Mannheim, Germany.
| | - Richard T Silver
- Division of Hematology/Medical Oncology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
12
|
Cytogenetic landscape and impact in blast phase of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia 2016; 31:585-592. [PMID: 27560111 DOI: 10.1038/leu.2016.231] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022]
Abstract
The landscape of additional chromosomal alterations (ACAs) and their impact in chronic myeloid leukemia, blast phase (CML-BP) treated with tyrosine kinase inhibitors (TKIs) have not been well studied. Here, we investigated a cohort of 354 CML-BP patients treated with TKIs. We identified +8, an extra Philadelphia chromosome (Ph), 3q26.2 rearrangement, -7 and isochromosome 17q (i(17q)) as the major-route changes with a frequency of over 10%. In addition, +21 and +19 had a frequency of over 5%. These ACAs demonstrated lineage specificity: +8, 3q26.2 rearrangement, i(17q) and +19 were significantly more common in myeloid BP, and -7 more common in lymphoid BP; +Ph and +21 were equally distributed between two groups. Pearson correlation analysis revealed clustering of common ACAs into two groups: 3q26.2 rearrangement, -7 and i(17q) formed one group, and other ACAs formed another group. The grouping correlated with risk stratification of ACAs in CML, chronic phase. Despite the overall negative prognostic impact of ACAs, stratification of ACAs into major vs minor-route changes provided no prognostic relevance in CML-BP. The emergence of 3q26.2 rearrangement as a major-route change in the TKI era correlated with a high frequency of ABL1 mutations, supporting a role for TKI resistance in the changing cytogenetic landscape in CML-BP.
Collapse
|
13
|
Mendoza-Salas I, Olarte-Carrillo I, Miranda-Peralta E, Ramos-Peñafiel C, García-Laguna A, Cerón-Maldonado R, De la Cruz-Rosas A, Collazo-Jaloma J, Kassac-Ipiña J, Mendoza-García E, Ramón-Gallegos E, Martínez-Tovar A. Frequency of cancer testis antigens in chronic myeloid leukemia. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2016. [DOI: 10.1016/j.hgmx.2015.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Prinzhorn W, Stehle M, Kleiner H, Ruppenthal S, Müller MC, Hofmann WK, Fabarius A, Seifarth W. c-MYB is a transcriptional regulator of ESPL1/Separase in BCR-ABL-positive chronic myeloid leukemia. Biomark Res 2016; 4:5. [PMID: 26937281 PMCID: PMC4774018 DOI: 10.1186/s40364-016-0059-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/24/2016] [Indexed: 01/05/2023] Open
Abstract
Background Genomic instability and clonal evolution are hallmarks of progressing chronic myeloid leukemia (CML). Recently, we have shown that clonal evolution and blast crisis correlate with altered expression and activity of Separase, a cysteine endopeptidase that is a mitotic key player in chromosomal segregation and centriole duplication. Hyperactivation of Separase in human hematopoietic cells has been linked to a feedback mechanism that posttranslationally stimulates Separase proteolytic activity after imatinib therapy-induced reduction of Separase protein levels. Methods and Results In search for potential therapy-responsive transcriptional mechanisms we have investigated the role of the transcription factor c-MYB for Separase expression in CML cell lines (LAMA-84, K562, BV-173) and in clinical samples. Quantitative RT-PCR and Western blot immunostaining experiments revealed that c-MYB expression levels are decreased in an imatinib-dependent manner and positively correlate with Separase expression levels in cell lines and in clinical CML samples. RNA silencing of c-MYB expression in CML cell lines resulted in reduced Separase protein levels. Gelshift and ChIP assays confirmed that c-MYB binds to a putative c-MYB binding sequence located within the ESPL1 promoter. Conclusions Our data suggest that ESPL1/Separase is a regulatory target of c-MYB. Therefore, c-MYB, known to be required for BCR-ABL-dependent transformation of hematopoietic progenitors and leukemogenesis, may also control the Separase-dependent fidelity of mitotic chromosomal segregation and centriole duplication essential for maintenance of genomic stability.
Collapse
Affiliation(s)
- Wiltrud Prinzhorn
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Michael Stehle
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Helga Kleiner
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Sabrina Ruppenthal
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Martin C Müller
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Wolf-Karsten Hofmann
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Alice Fabarius
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Wolfgang Seifarth
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| |
Collapse
|
15
|
Differential impact of additional chromosomal abnormalities in myeloid vs lymphoid blast phase of chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia 2016; 30:1606-9. [PMID: 26837843 DOI: 10.1038/leu.2016.6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|