1
|
Miljkovic M, Seguin A, Jia X, Cox JE, Catrow JL, Bergonia H, Phillips JD, Stephens WZ, Ward DM. Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4. J Biol Chem 2023; 299:104877. [PMID: 37269954 PMCID: PMC10316008 DOI: 10.1016/j.jbc.2023.104877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models.
Collapse
Affiliation(s)
- Marisa Miljkovic
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexandra Seguin
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Xuan Jia
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA; Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jonathan Leon Catrow
- Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Hector Bergonia
- Iron and Heme Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John D Phillips
- Division of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - W Zac Stephens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Diane M Ward
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
2
|
Sun W, Jia X, Liesa M, Tantin D, Ward DM. ABCB10 Loss Reduces CD4 + T Cell Activation and Memory Formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:328-337. [PMID: 34893527 PMCID: PMC8755610 DOI: 10.4049/jimmunol.2100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/04/2021] [Indexed: 01/17/2023]
Abstract
T cells must shift their metabolism to respond to infections and tumors and to undergo memory formation. The ATP-binding cassette transporter ABCB10 localizes to the mitochondrial inner membrane, where it is thought to export a substrate important in heme biosynthesis and metabolism, but its role in T cell development and activation is unknown. In this article, we use a combination of methods to study the effect of ABCB10 loss in primary and malignantly transformed T cells. Although Abcb10 is dispensable for development of both CD4+ and CD8+ T cells, it is required for expression of specific cytokines in CD4+, but not CD8+, T cells activated in vitro. These defects in cytokine expression are magnified on repeated stimulation. In vivo, CD8+ cells lacking ABCB10 expand more in response to viral infection than their control counterparts, while CD4+ cells show reductions in both number and percentage. CD4+ cells lacking ABCB10 show impairment in Ag-specific memory formation and recall responses that become more severe with time. In malignant human CD4+ Jurkat T cells, we find that CRISPR-mediated ABCB10 disruption recapitulates the same cytokine expression defects upon activation as observed in primary mouse T cells. Mechanistically, ABCB10 deletion in Jurkat T cells disrupts the ability to switch to aerobic glycolysis upon activation. Cumulatively, these results show that ABCB10 is selectively required for specific cytokine responses and memory formation in CD4+ T cells, suggesting that targeting this molecule could be used to mitigate aberrant T cell activation.
Collapse
Affiliation(s)
- Wenxiang Sun
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City UT 84112 USA,Huntsman Cancer Institute, University of Utah, School of Medicine, Salt Lake City UT 84112 USA
| | - Xuan Jia
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City UT 84112 USA
| | - Marc Liesa
- Department of Medicine, Division of Endocrinology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Dean Tantin
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City UT 84112 USA,Huntsman Cancer Institute, University of Utah, School of Medicine, Salt Lake City UT 84112 USA
| | - Diane M. Ward
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City UT 84112 USA,corresponding author: Diane M. Ward: , Ph# 801-581-4967, FAX# 801-581-6001
| |
Collapse
|
3
|
Shum M, Shintre CA, Althoff T, Gutierrez V, Segawa M, Saxberg AD, Martinez M, Adamson R, Young MR, Faust B, Gharakhanian R, Su S, Chella Krishnan K, Mahdaviani K, Veliova M, Wolf DM, Ngo J, Nocito L, Stiles L, Abramson J, Lusis AJ, Hevener AL, Zoghbi ME, Carpenter EP, Liesa M. ABCB10 exports mitochondrial biliverdin, driving metabolic maladaptation in obesity. Sci Transl Med 2021; 13:13/594/eabd1869. [PMID: 34011630 DOI: 10.1126/scitranslmed.abd1869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Although the role of hydrophilic antioxidants in the development of hepatic insulin resistance and nonalcoholic fatty liver disease has been well studied, the role of lipophilic antioxidants remains poorly characterized. A known lipophilic hydrogen peroxide scavenger is bilirubin, which can be oxidized to biliverdin and then reduced back to bilirubin by cytosolic biliverdin reductase. Oxidation of bilirubin to biliverdin inside mitochondria must be followed by the export of biliverdin to the cytosol, where biliverdin is reduced back to bilirubin. Thus, the putative mitochondrial exporter of biliverdin is expected to be a major determinant of bilirubin regeneration and intracellular hydrogen peroxide scavenging. Here, we identified ABCB10 as a mitochondrial biliverdin exporter. ABCB10 reconstituted into liposomes transported biliverdin, and ABCB10 deletion caused accumulation of biliverdin inside mitochondria. Obesity with insulin resistance up-regulated hepatic ABCB10 expression in mice and elevated cytosolic and mitochondrial bilirubin content in an ABCB10-dependent manner. Revealing a maladaptive role of ABCB10-driven bilirubin synthesis, hepatic ABCB10 deletion protected diet-induced obese mice from steatosis and hyperglycemia, improving insulin-mediated suppression of glucose production and decreasing lipogenic SREBP-1c expression. Protection was concurrent with enhanced mitochondrial function and increased inactivation of PTP1B, a phosphatase disrupting insulin signaling and elevating SREBP-1c expression. Restoration of cellular bilirubin content in ABCB10 KO hepatocytes reversed the improvements in mitochondrial function and PTP1B inactivation, demonstrating that bilirubin was the maladaptive effector linked to ABCB10 function. Thus, we identified a fundamental transport process that amplifies intracellular bilirubin redox actions, which can exacerbate insulin resistance and steatosis in obesity.
Collapse
Affiliation(s)
- Michael Shum
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Chitra A Shintre
- Center for Medicines Discovery, University of Oxford, Oxfordshire OX3 7DQ, UK
| | - Thorsten Althoff
- Department of Physiology, University of California, Los Angeles, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Vincent Gutierrez
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Mayuko Segawa
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Alexandra D Saxberg
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| | - Melissa Martinez
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| | - Roslin Adamson
- Center for Medicines Discovery, University of Oxford, Oxfordshire OX3 7DQ, UK
| | - Margaret R Young
- Center for Medicines Discovery, University of Oxford, Oxfordshire OX3 7DQ, UK
| | - Belinda Faust
- Center for Medicines Discovery, University of Oxford, Oxfordshire OX3 7DQ, UK
| | - Raffi Gharakhanian
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Shi Su
- Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Karthickeyan Chella Krishnan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Kiana Mahdaviani
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Michaela Veliova
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Dane M Wolf
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Jennifer Ngo
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laura Nocito
- Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Linsey Stiles
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Jeff Abramson
- Department of Physiology, University of California, Los Angeles, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Andrea L Hevener
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Maria E Zoghbi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| | | | - Marc Liesa
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA. .,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| |
Collapse
|
4
|
Martinez M, Fendley GA, Saxberg AD, Zoghbi ME. Stimulation of the human mitochondrial transporter ABCB10 by zinc-mesoporphrin. PLoS One 2020; 15:e0238754. [PMID: 33253225 PMCID: PMC7703921 DOI: 10.1371/journal.pone.0238754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
Heme biosynthesis occurs through a series of reactions that take place within the cytoplasm and mitochondria, so intermediates need to move across these cellular compartments. However, the specific membrane transport mechanisms involved in the process are not yet identified. The ATP-binding cassette protein ABCB10 is essential for normal heme production, as knocking down this transporter in mice is embryonically lethal and accompanied by severe anemia plus oxidative damage. The role of ABCB10 is unknown, but given its location in the inner mitochondrial membrane, it has been proposed as a candidate to export either an early heme precursor or heme. Alternatively, ABCB10 might transport a molecule important for protection against oxidative damage. To help discern between these possibilities, we decided to study the effect of heme analogs, precursors, and antioxidant peptides on purified human ABCB10. Since substrate binding increases the ATP hydrolysis rate of ABC transporters, we have determined the ability of these molecules to activate purified ABCB10 reconstituted in lipid nanodiscs using ATPase measurements. Under our experimental conditions, we found that the only heme analog increasing ABCB10 ATPase activity was Zinc-mesoporphyrin. This activation of almost seventy percent was specific for ABCB10, as the ATPase activity of a negative control bacterial ABC transporter was not affected. The activation was also observed in cysteine-less ABCB10, suggesting that Zinc-mesoporphyrin's effect did not require binding to typical heme regulatory motifs. Furthermore, our data indicate that ABCB10 was not directly activated by neither the early heme precursor delta-aminolevulinic acid nor glutathione, downsizing their relevance as putative substrates for this transporter. Although additional studies are needed to determine the physiological substrate of ABCB10, our findings reveal Zinc-mesoporphyrin as the first tool compound to directly modulate ABCB10 activity and raise the possibility that some actions of Zinc-mesoporphyrin in cellular and animal studies could be mediated by ABCB10.
Collapse
Affiliation(s)
- Melissa Martinez
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Gregory A. Fendley
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Alexandra D. Saxberg
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Maria E. Zoghbi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
| |
Collapse
|
5
|
Beyond Toxin Transport: Novel Role of ABC Transporter for Enzymatic Machinery of Cereulide NRPS Assembly Line. mBio 2020; 11:mBio.01577-20. [PMID: 32994334 PMCID: PMC7527721 DOI: 10.1128/mbio.01577-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study revealed a novel, potentially conserved mechanism involved in the biosynthesis of microbial natural products, exemplified by the mitochondrial active depsipeptide cereulide. Similar to other bioactive substances, such as the last-resort antibiotics vancomycin and daptomycin, the antitumor drug cryptophycin or the cholesterol-lowering agent lovastatin, cereulide is synthesized nonribosomally by multienzyme machinery, requiring the concerted actions of multiple proteins to ensure correct product assembly. Given the importance of microbial secondary metabolites in human and veterinary medicine, it is critical to understand how these processes are orchestrated within the host cells. By revealing that tethering of a biosynthetic enzyme to the cell membrane by an ABC transporter is essential for nonribosomal peptide production, our study provides novel insights into synthesis of microbial secondary metabolites, which could contribute to isolation of novel compounds from cryptic secondary metabolite clusters or improve the yield of produced pharmaceuticals. Nonribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs) play a pivotal role in the production of bioactive natural products, such as antibiotics and cytotoxins. Despite biomedical and pharmaceutical importance, the molecular mechanisms and architectures of these multimodular enzyme complexes are not fully understood. Here, we report on an ABC transporter that forms a vital part of the nonribosomal peptide biosynthetic machinery. Emetic Bacillus cereus produces the highly potent, mitochondrial active nonribosomal depsipeptide cereulide, synthesized by the NRPS Ces. The ces gene locus includes, next to the structural cesAB genes, a putative ABC transporter, designated cesCD. Our study demonstrates that tethering of CesAB synthetase to the cell membrane by CesCD is critical for peptide assembly. In vivo studies revealed that CesAB colocalizes with CesCD on the cell membrane, suggesting direct involvement of this ABC transporter in the biosynthesis of a nonribosomal peptide. Mutation of cesCD, disrupting the assembly of the CesCD complex, resulted in decreased interaction with CesAB and, as a consequence, negatively affected cereulide biosynthesis. Specific domains within CesAB synthetase interacting with CesC were identified. Furthermore, we demonstrated that the structurally similar BerAB transporter from Bacillus thuringiensis complements CesCD function in cereulide biosynthesis, suggesting that the direct involvement of ABC transporter in secondary metabolite biosynthesis could be a widespread mechanism. In summary, our study revealed a novel, noncanonical function for ABC transporter, which is essential for megaenzyme functionality of NRPS. The new insights into natural product biosynthesis gained may facilitate the discovery of new metabolites with bioactive potential.
Collapse
|
6
|
Sobh A, Loguinov A, Zhou J, Jenkitkasemwong S, Zeidan R, El Ahmadie N, Tagmount A, Knutson M, Fraenkel PG, Vulpe CD. Genetic screens reveal CCDC115 as a modulator of erythroid iron and heme trafficking. Am J Hematol 2020; 95:1085-1098. [PMID: 32510613 DOI: 10.1002/ajh.25899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022]
Abstract
Transferrin-bound iron (TBI), the physiological circulating iron form, is acquired by cells through the transferrin receptor (TfR1) by endocytosis. In erythroid cells, most of the acquired iron is incorporated into heme in the mitochondria. Cellular trafficking of heme is indispensable for erythropoiesis and many other essential biological processes. Comprehensive elucidation of molecular pathways governing and regulating cellular iron acquisition and heme trafficking is required to better understand physiological and pathological processes affecting erythropoiesis. Here, we report the first genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens in human erythroid cells to identify determinants of iron and heme uptake, as well as heme-mediated erythroid differentiation. We identified several candidate modulators of TBI acquisition including TfR1, indicating that our approach effectively revealed players mechanistically relevant to the process. Interestingly, components of the endocytic pathway were also revealed as potential determinants of transferrin acquisition. We deciphered a role for the vacuolar-type H+ - ATPase (V- ATPase) assembly factor coiled-coil domain containing 115 (CCDC115) in TBI uptake and validated this role in CCDC115 deficient K562 cells. Our screen in hemin-treated cells revealed perturbations leading to cellular adaptation to heme, including those corresponding to trafficking mechanisms and transcription factors potentiating erythroid differentiation. Pathway analysis indicated that endocytosis and vesicle acidification are key processes for heme trafficking in erythroid precursors. Furthermore, we provided evidence that CCDC115, which we identified as required for TBI uptake, is also involved in cellular heme distribution. This work demonstrates a previously unappreciated common intersection in trafficking of transferrin iron and heme in the endocytic pathway of erythroid cells.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program University of California Berkeley Berkeley California
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Alex Loguinov
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Jie Zhou
- Department of Physiological Sceinces University of Florida Gainesville Florida
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Supak Jenkitkasemwong
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Rola Zeidan
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Nader El Ahmadie
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | | | - Mitchell Knutson
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Paula G. Fraenkel
- Division of Hematology/Oncology and Cancer Research Institute Beth Israel Deaconess Medical Center Boston Massachusetts
- Department of Medicine Harvard Medical School Boston Massachusetts
- Oncology Research and Development, Sanofi Cambridge Massachusetts
| | | |
Collapse
|
7
|
Luo S, Yin J, Peng Y, Xie J, Wu H, He D, Li X, Cheng G. Glutathione is Involved in Detoxification of Peroxide and Root Nodule Symbiosis of Mesorhizobium huakuii. Curr Microbiol 2019; 77:1-10. [PMID: 31624868 DOI: 10.1007/s00284-019-01784-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Legumes interact with symbiotic rhizobia to produce nitrogen-fixation root nodules under nitrogen-limiting conditions. The contribution of glutathione (GSH) to this symbiosis and anti-oxidative damage was investigated using the M. huakuii gshB (encoding GSH synthetase) mutant. The gshB mutant grew poorly with different monosaccharides, including glucose, sucrose, fructose, maltose, or mannitol, as sole sources of carbon. The antioxidative capacity of gshB mutant was significantly decreased by these treatments with H2O2 under the lower concentrations and cumene hydroperoxide (CUOOH) under the higher concentrations, indicating that GSH plays different roles in response to organic peroxide and inorganic peroxide. The gshB mutant strain displayed no difference in catalase activity, but significantly lower levels of the peroxidase activity and the glutathione reductase activity than the wild type. The same level of catalase activity could be associated with upregulation of the transcriptional activity of the catalase genes under H2O2-induced conditions. The nodules infected by the gshB mutant were severely impaired in abnormal nodules, and showed a nodulation phenotype coupled to a 60% reduction in the nitrogen fixation capacity. A 20-fold decrease in the expression of two nitrogenase genes, nifH and nifD, is observed in the nodules induced by gshB mutant strain. The symbiotic deficiencies were linked to bacteroid early senescence.
Collapse
Affiliation(s)
- Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Jie Yin
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Yang Peng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Jing Xie
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Hetao Wu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
8
|
Leishmania LABCG2 transporter is involved in ATP-dependent transport of thiols. Biochem J 2018; 475:87-97. [PMID: 29162656 DOI: 10.1042/bcj20170685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
The Leishmania LABCG2 transporter has a key role in the redox metabolism of these protozoan parasites. Recently, the involvement of LABCG2 in virulence, autophagy and oxidative stress has been described. Null mutant parasites for LABCG2 present an increase in the intracellular levels of glutathione (GSH) and trypanothione [T(SH)2]. On the other hand, parasites overexpressing LABCG2 transporter export non-protein thiols to the extracellular medium. To explore if LABCG2 may mediate an active transport of non-protein thiols, the effect of these molecules on ATPase activity of LABCG2 as well as the ability of LABCG2 to transport them was determined using a baculovirus-Sf9 insect cell system. Our results indicate that all thiols tested [GSH, T(SH)2] as well as their oxidized forms GSSG and TS2 (trypanothione disulfide) stimulate LABCG2-ATPase basal activity. We have measured the transport of [3H]-GSH in inside-out Sf9 cell membrane vesicles expressing LABCG2-GFP (green fluorescence protein), finding that LABCG2 was able to mediate a rapid and concentration-dependent uptake of [3H]-GSH in the presence of ATP. Finally, we have analyzed the ability of different thiol species to compete for this uptake, T(SH)2 and TS2 being the best competitors. The IC50 value for [3H]-GSH uptake in the presence of increasing concentrations of T(SH)2 was less than 100 μM, highlighting the affinity of this thiol for LABCG2. These results provide the first direct evidence that LABCG2 is an ABC transporter of reduced and oxidized non-protein thiols in Leishmania, suggesting that this transporter can play a role in the redox metabolism and related processes in this protozoan parasite.
Collapse
|
9
|
Seguin A, Takahashi-Makise N, Yien YY, Huston NC, Whitman JC, Musso G, Wallace JA, Bradley T, Bergonia HA, Kafina MD, Matsumoto M, Igarashi K, Phillips JD, Paw BH, Kaplan J, Ward DM. Reductions in the mitochondrial ABC transporter Abcb10 affect the transcriptional profile of heme biosynthesis genes. J Biol Chem 2017; 292:16284-16299. [PMID: 28808058 DOI: 10.1074/jbc.m117.797415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/09/2017] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette subfamily B member 10 (Abcb10) is a mitochondrial ATP-binding cassette (ABC) transporter that complexes with mitoferrin1 and ferrochelatase to enhance heme biosynthesis in developing red blood cells. Reductions in Abcb10 levels have been shown to reduce mitoferrin1 protein levels and iron import into mitochondria, resulting in reduced heme biosynthesis. As an ABC transporter, Abcb10 binds and hydrolyzes ATP, but its transported substrate is unknown. Here, we determined that decreases in Abcb10 did not result in protoporphyrin IX accumulation in morphant-treated zebrafish embryos or in differentiated Abcb10-specific shRNA murine Friend erythroleukemia (MEL) cells in which Abcb10 was specifically silenced with shRNA. We also found that the ATPase activity of Abcb10 is necessary for hemoglobinization in MEL cells, suggesting that the substrate transported by Abcb10 is important in mediating increased heme biosynthesis during erythroid development. Inhibition of 5-aminolevulinic acid dehydratase (EC 4.2.1.24) with succinylacetone resulted in both 5-aminolevulinic acid (ALA) accumulation in control and Abcb10-specific shRNA MEL cells, demonstrating that reductions in Abcb10 do not affect ALA export from mitochondria and indicating that Abcb10 does not transport ALA. Abcb10 silencing resulted in an alteration in the heme biosynthesis transcriptional profile due to repression by the transcriptional regulator Bach1, which could be partially rescued by overexpression of Alas2 or Gata1, providing a mechanistic explanation for why Abcb10 shRNA MEL cells exhibit reduced hemoglobinization. In conclusion, our findings rule out that Abcb10 transports ALA and indicate that Abcb10's ATP-hydrolysis activity is critical for hemoglobinization and that the substrate transported by Abcb10 provides a signal that optimizes hemoglobinization.
Collapse
Affiliation(s)
- Alexandra Seguin
- From the Division of Microbiology and Immunology, Department of Pathology, and
| | | | | | | | | | - Gabriel Musso
- the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jared A Wallace
- From the Division of Microbiology and Immunology, Department of Pathology, and
| | - Thomas Bradley
- From the Division of Microbiology and Immunology, Department of Pathology, and
| | - Hector A Bergonia
- the Division of Hematology-Oncology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | | | - Mitsuyo Matsumoto
- the Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Kazuhiko Igarashi
- the Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - John D Phillips
- the Division of Hematology-Oncology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Barry H Paw
- the Division of Hematology and.,the Division of Hematology-Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Jerry Kaplan
- From the Division of Microbiology and Immunology, Department of Pathology, and
| | - Diane M Ward
- From the Division of Microbiology and Immunology, Department of Pathology, and
| |
Collapse
|