1
|
Tran H, Le L, Singh BN, Kramer J, Steward R. Tet controls axon guidance in early brain development through glutamatergic signaling. iScience 2024; 27:109634. [PMID: 38655199 PMCID: PMC11035372 DOI: 10.1016/j.isci.2024.109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in ten-eleven translocation (TET) proteins are associated with human neurodevelopmental disorders. We find a function of Tet in regulating Drosophila early brain development. The Tet DNA-binding domain (TetAXXC) is required for axon guidance in the mushroom body (MB). Glutamine synthetase 2 (Gs2), a key enzyme in glutamatergic signaling, is significantly down-regulated in the TetAXXC brains. Loss of Gs2 recapitulates the TetAXXC phenotype. Surprisingly, Tet and Gs2 act in the insulin-producing cells (IPCs) to control MB axon guidance, and overexpression of Gs2 in IPCs rescues the defects of TetAXXC. Feeding TetAXXC with metabotropic glutamate receptor antagonist MPEP rescues the phenotype while glutamate enhances it. Mutants in Tet and Drosophila Fmr1, the homolog of human FMR1, have similar defects, and overexpression of Gs2 in IPCs also rescues the Fmr1 phenotype. We provide the first evidence that Tet controls the guidance of developing brain axons by modulating glutamatergic signaling.
Collapse
Affiliation(s)
- Hiep Tran
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Le Le
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Badri Nath Singh
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ruth Steward
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
- Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Tran H, Le L, Singh BN, Kramer J, Steward R. Tet Controls Axon Guidance in Early Brain Development through Glutamatergic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539069. [PMID: 37398066 PMCID: PMC10312521 DOI: 10.1101/2023.05.02.539069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mutations in human TET proteins have been found in individuals with neurodevelopmental disorders. Here we report a new function of Tet in regulating Drosophila early brain development. We found that mutation in the Tet DNA-binding domain ( Tet AXXC ) resulted in axon guidance defects in the mushroom body (MB). Tet is required in early brain development during the outgrowth of MB β axons. Transcriptomic study shows that glutamine synthetase 2 (Gs2), a key enzyme in glutamatergic signaling, is significantly downregulated in the Tet AXXC mutant brains. CRISPR/Cas9 mutagenesis or RNAi knockdown of Gs2 recapitulates the Tet AXXC mutant phenotype. Surprisingly, Tet and Gs2 act in the insulin-producing cells (IPCs) to control MB axon guidance, and overexpression of Gs2 in these cells rescues the axon guidance defects of Tet AXXC . Treating Tet AXXC with the metabotropic glutamate receptor antagonist MPEP can rescue while treating with glutamate enhances the phenotype confirming Tet function in regulating glutamatergic signaling. Tet AXXC and the Drosophila homolog of Fragile X Messenger Ribonucleoprotein protein mutant ( Fmr1 3 ) have similar axon guidance defects and reduction in Gs2 mRNA levels. Interestingly, overexpression of Gs2 in the IPCs also rescues the Fmr1 3 phenotype, suggesting functional overlapping of the two genes. Our studies provide the first evidence that Tet can control the guidance of axons in the developing brain by modulating glutamatergic signaling and the function is mediated by its DNA-binding domain.
Collapse
|
3
|
Li F, Artiushin G, Sehgal A. Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. eLife 2023; 12:e86336. [PMID: 37140181 PMCID: PMC10205086 DOI: 10.7554/elife.86336] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Endocytosis through Drosophila glia is a significant determinant of sleep amount and occurs preferentially during sleep in glia of the blood-brain barrier (BBB). To identify metabolites whose trafficking is mediated by sleep-dependent endocytosis, we conducted metabolomic analysis of flies that have increased sleep due to a block in glial endocytosis. We report that acylcarnitines, fatty acids conjugated to carnitine to promote their transport, accumulate in heads of these animals. In parallel, to identify transporters and receptors whose loss contributes to the sleep phenotype caused by blocked endocytosis, we screened genes enriched in barrier glia for effects on sleep. We find that knockdown of lipid transporters LRP1&2 or of carnitine transporters ORCT1&2 increases sleep. In support of the idea that the block in endocytosis affects trafficking through specific transporters, knockdown of LRP or ORCT transporters also increases acylcarnitines in heads. We propose that lipid species, such as acylcarnitines, are trafficked through the BBB via sleep-dependent endocytosis, and their accumulation reflects an increased need for sleep.
Collapse
Affiliation(s)
- Fu Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory Artiushin
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
4
|
Calvin-Cejudo L, Martin F, Mendez LR, Coya R, Castañeda-Sampedro A, Gomez-Diaz C, Alcorta E. Neuron-glia interaction at the receptor level affects olfactory perception in adult Drosophila. iScience 2022; 26:105837. [PMID: 36624835 PMCID: PMC9823236 DOI: 10.1016/j.isci.2022.105837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Some types of glia play an active role in neuronal signaling by modifying their activity although little is known about their role in sensory information signaling at the receptor level. In this research, we report a functional role for the glia that surround the soma of the olfactory receptor neurons (OSNs) in adult Drosophila. Specific genetic modifications have been targeted to this cell type to obtain live individuals who are tested for olfactory preference and display changes both increasing and reducing sensitivity. A closer look at the antenna by Ca2+ imaging shows that odor activates the OSNs, which subsequently produce an opposite and smaller effect in the glia that partially counterbalances neuronal activation. Therefore, these glia may play a dual role in preventing excessive activation of the OSNs at high odorant concentrations and tuning the chemosensory window for the individual according to the network structure in the receptor organ.
Collapse
Affiliation(s)
- Laura Calvin-Cejudo
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Fernando Martin
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Luis R. Mendez
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Ruth Coya
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Ana Castañeda-Sampedro
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Carolina Gomez-Diaz
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Esther Alcorta
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Corresponding author
| |
Collapse
|
5
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
6
|
Damulewicz M, Doktór B, Baster Z, Pyza E. The Role of Glia Clocks in the Regulation of Sleep in Drosophila melanogaster. J Neurosci 2022; 42:6848-6860. [PMID: 35906073 PMCID: PMC9463985 DOI: 10.1523/jneurosci.2340-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
In Drosophila melanogaster, the pacemaker located in the brain plays the main role in maintaining circadian rhythms; however, peripheral oscillators including glial cells, are also crucial components of the circadian network. In the present study, we investigated an impact of oscillators located in astrocyte-like glia, the chiasm giant glia of the optic lobe, epithelial and subperineurial glia on sleep of Drosophila males. We described that oscillators located in astrocyte-like glia and chiasm giant glia are necessary to maintain daily changes in clock neurons arborizations, while those located in epithelial glia regulate amplitude of these changes. Finally, we showed that communication between glia and neurons through tripartite synapses formed by epithelial glia and, in effect, neurotransmission regulation plays important role in wake-promoting during the day.SIGNIFICANCE STATEMENT Circadian clock or pacemaker regulates many aspects of animals' physiology and behavior. The pacemaker is located in the brain and is composed of neurons. However, there are also additional oscillators, called peripheral clocks, which synchronize the main clock. Despite the critical role of glia in the clock machinery, little is known which type of glia houses peripheral oscillators and how they affect neuronal clocks. This study using Drosophila shows that oscillators in specific glia types maintain awakeness during the day by regulating the daily plasticity of clock neurons.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow 30-387, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
7
|
Genetic analysis of the Drosophila ESCRT-III complex protein, VPS24, reveals a novel function in lysosome homeostasis. PLoS One 2021; 16:e0251184. [PMID: 33956855 PMCID: PMC8101729 DOI: 10.1371/journal.pone.0251184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The ESCRT pathway is evolutionarily conserved across eukaryotes and plays key roles in a variety of membrane remodeling processes. A new Drosophila mutant recovered in our forward genetic screens for synaptic transmission mutants mapped to the vps24 gene encoding a subunit of the ESCRT-III complex. Molecular characterization indicated a loss of VPS24 function, however the mutant is viable and thus loss of VPS24 may be studied in a developed multicellular organism. The mutant exhibits deficits in locomotion and lifespan and, notably, these phenotypes are rescued by neuronal expression of wild-type VPS24. At the cellular level, neuronal and muscle cells exhibit marked expansion of a ubiquitin-positive lysosomal compartment, as well as accumulation of autophagic intermediates, and these phenotypes are rescued cell-autonomously. Moreover, VPS24 expression in glia suppressed the mutant phenotype in muscle, indicating a cell-nonautonomous function for VPS24 in protective intercellular signaling. Ultrastructural analysis of neurons and muscle indicated marked accumulation of the lysosomal compartment in the vps24 mutant. In the neuronal cell body, this included characteristic lysosomal structures associated with an expansive membrane compartment with a striking tubular network morphology. These findings further define the in vivo roles of VPS24 and the ESCRT pathway in lysosome homeostasis and their potential contributions to neurodegenerative diseases characterized by defective ESCRT or lysosome function.
Collapse
|
8
|
Bowles SN, Johnson CM. Inferences of glia-mediated control in Caenorhabditis elegans. J Neurosci Res 2021; 99:1191-1206. [PMID: 33559247 PMCID: PMC8005477 DOI: 10.1002/jnr.24803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
Astrocytes modulate synaptic transmission; yet, it remains unclear how glia influence complex behaviors. Here, we explore the effects of Caenorhabditis elegans astrocyte-like cephalic glia (CEPglia ) and the glia-specific bHLH transcription factor HLH-17 on mating behavior and the defecation motor program (DMP). In C. elegans, male mating has been explicitly described through the male tail circuit and is characterized by coordination of multiple independent behaviors to ensure that copulation is achieved. Furthermore, the sex-specific male mating circuitry shares similar components with the DMP, which is complex and rhythmic, and requires a fixed sequence of behaviors to be activated periodically. We found that loss of CEPglia reduced persistence in executing mating behaviors and hindered copulation, while males that lacked HLH-17 demonstrated repetitive prodding behavior that increased the time spent in mating but did not hinder copulation. During the DMP, we found that posterior body wall contractions (pBocs) and enteric muscle contractions (EMCs) were differentially affected by loss of HLH-17 or CEPglia in males and hermaphrodites. pBocs and EMCs required HLH-17 activity in both sexes, whereas loss of CEPglia alone did not affect DMP in males. Our data suggest that CEPglia mediate complex behaviors by signaling to the GABAergic DVB neuron, and that HLH-17 activity influences those discrete steps within those behaviors. Collectively, these data provide evidence of glia as a link in cooperative regulation of complex and rhythmic behavior that, in C. elegans links circuitry in the head and the tail.
Collapse
Affiliation(s)
- Stephanie N. Bowles
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
| | - Casonya M. Johnson
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
- Department of Biology, James Madison University, Harrisonburg, VA, 22807
| |
Collapse
|
9
|
Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S, Klämbt C. Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol 2020; 81:438-452. [PMID: 32096904 DOI: 10.1002/dneu.22737] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.
Collapse
Affiliation(s)
- Jonas Bittern
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Nicole Pogodalla
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Henrike Ohm
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Lena Brüser
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Rita Kottmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
10
|
Ng FS, Sengupta S, Huang Y, Yu AM, You S, Roberts MA, Iyer LK, Yang Y, Jackson FR. TRAP-seq Profiling and RNAi-Based Genetic Screens Identify Conserved Glial Genes Required for Adult Drosophila Behavior. Front Mol Neurosci 2016; 9:146. [PMID: 28066175 PMCID: PMC5177635 DOI: 10.3389/fnmol.2016.00146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
Although, glial cells have well characterized functions in the developing and mature brain, it is only in the past decade that roles for these cells in behavior and plasticity have been delineated. Glial astrocytes and glia-neuron signaling, for example, are now known to have important modulatory functions in sleep, circadian behavior, memory and plasticity. To better understand mechanisms of glia-neuron signaling in the context of behavior, we have conducted cell-specific, genome-wide expression profiling of adult Drosophila astrocyte-like brain cells and performed RNA interference (RNAi)-based genetic screens to identify glial factors that regulate behavior. Importantly, our studies demonstrate that adult fly astrocyte-like cells and mouse astrocytes have similar molecular signatures; in contrast, fly astrocytes and surface glia-different classes of glial cells-have distinct expression profiles. Glial-specific expression of 653 RNAi constructs targeting 318 genes identified multiple factors associated with altered locomotor activity, circadian rhythmicity and/or responses to mechanical stress (bang sensitivity). Of interest, 1 of the relevant genes encodes a vesicle recycling factor, 4 encode secreted proteins and 3 encode membrane transporters. These results strongly support the idea that glia-neuron communication is vital for adult behavior.
Collapse
Affiliation(s)
- Fanny S Ng
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Sukanya Sengupta
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Yanmei Huang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Amy M Yu
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Samantha You
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Mary A Roberts
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Lakshmanan K Iyer
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Yongjie Yang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - F Rob Jackson
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
11
|
Wang IE, Lapan SW, Scimone ML, Clandinin TR, Reddien PW. Hedgehog signaling regulates gene expression in planarian glia. eLife 2016; 5:e16996. [PMID: 27612382 PMCID: PMC5055395 DOI: 10.7554/elife.16996] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology.
Collapse
Affiliation(s)
- Irving E Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Sylvain W Lapan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - M Lucila Scimone
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Peter W Reddien
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
12
|
Kawasaki F, Koonce NL, Guo L, Fatima S, Qiu C, Moon MT, Zheng Y, Ordway RW. Small heat shock proteins mediate cell-autonomous and -nonautonomous protection in a Drosophila model for environmental-stress-induced degeneration. Dis Model Mech 2016; 9:953-64. [PMID: 27483356 PMCID: PMC5047692 DOI: 10.1242/dmm.026385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Cell and tissue degeneration, and the development of degenerative diseases, are influenced by genetic and environmental factors that affect protein misfolding and proteotoxicity. To better understand the role of the environment in degeneration, we developed a genetic model for heat shock (HS)-stress-induced degeneration in Drosophila. This model exhibits a unique combination of features that enhance genetic analysis of degeneration and protection mechanisms involving environmental stress. These include cell-type-specific failure of proteostasis and degeneration in response to global stress, cell-nonautonomous interactions within a simple and accessible network of susceptible cell types, and precise temporal control over the induction of degeneration. In wild-type flies, HS stress causes selective loss of the flight ability and degeneration of three susceptible cell types comprising the flight motor: muscle, motor neurons and associated glia. Other motor behaviors persist and, accordingly, the corresponding cell types controlling leg motor function are resistant to degeneration. Flight motor degeneration was preceded by a failure of muscle proteostasis characterized by diffuse ubiquitinated protein aggregates. Moreover, muscle-specific overexpression of a small heat shock protein (HSP), HSP23, promoted proteostasis and protected muscle from HS stress. Notably, neurons and glia were protected as well, indicating that a small HSP can mediate cell-nonautonomous protection. Cell-autonomous protection of muscle was characterized by a distinct distribution of ubiquitinated proteins, including perinuclear localization and clearance of protein aggregates associated with the perinuclear microtubule network. This network was severely disrupted in wild-type preparations prior to degeneration, suggesting that it serves an important role in muscle proteostasis and protection. Finally, studies of resistant leg muscles revealed that they sustain proteostasis and the microtubule cytoskeleton after HS stress. These findings establish a model for genetic analysis of degeneration and protection mechanisms involving contributions of environmental factors, and advance our understanding of the protective functions and therapeutic potential of small HSPs. Summary: A Drosophila model for environmental-stress-induced degeneration exhibits key features for genetic analysis of degenerative disease mechanisms and reveals new forms of protection mediated by small heat shock proteins.
Collapse
Affiliation(s)
- Fumiko Kawasaki
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Noelle L Koonce
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Linda Guo
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shahroz Fatima
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Catherine Qiu
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie T Moon
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yunzhen Zheng
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard W Ordway
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|