1
|
Tian Y, Liu X, Hu J, Zhang H, Wang B, Li Y, Fu L, Su R, Yu Y. Integrated Bioinformatic Analysis of the Expression and Prognosis of Caveolae-Related Genes in Human Breast Cancer. Front Oncol 2021; 11:703501. [PMID: 34513683 PMCID: PMC8427033 DOI: 10.3389/fonc.2021.703501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022] Open
Abstract
Caveolae-related genes, including CAVs that encodes caveolins and CAVINs that encodes caveolae-associated proteins cavins, have been identified for playing significant roles in a variety of biological processes including cholesterol transport and signal transduction, but evidences related to tumorigenesis and cancer progression are not abundant to correlate with clinical characteristics and prognosis of patients with cancer. In this study, we investigated the expression of these genes at transcriptional and translational levels in patients with breast cancer using Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal databases, and immunohistochemistry of the patients in our hospital. Prognosis of patients with breast cancer based on the expressions of CAVs and CAVINs was summarized using Kaplan-Meier Plotter with their correlation to different subtyping. The relevant molecular pathways of these genes were further analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and Gene Set Enrichment Analysis (GSEA). Results elucidated that expression levels of CAV1, CAV2, CAVIN1, CAVIN2, and CAVIN3 were significantly lower in breast cancer tissues than in normal samples, while the expression level of CAVIN2 was correlated with advanced tumor stage. Furthermore, investigations on survival of patients with breast cancer indicated outstanding associations between prognosis and CAVIN2 levels, especially for the patients with estrogen receptor positive (ER+) breast cancer. In conclusion, our investigation indicated CAVIN2 is a potential therapeutic target for patients with ER+ breast cancer, which may relate to functions of cancer cell surface receptors and adhesion molecules.
Collapse
Affiliation(s)
- Yao Tian
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaofeng Liu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jing Hu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huan Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Baichuan Wang
- Anhui Medical University Clinical College of Chest, Hefei, China.,Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, China
| | - Yingxi Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ran Su
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
2
|
Nishi M, Ogata T, Cannistraci CV, Ciucci S, Nakanishi N, Higuchi Y, Sakamoto A, Tsuji Y, Mizushima K, Matoba S. Systems Network Genomic Analysis Reveals Cardioprotective Effect of MURC/Cavin-4 Deletion Against Ischemia/Reperfusion Injury. J Am Heart Assoc 2019; 8:e012047. [PMID: 31364493 PMCID: PMC6761664 DOI: 10.1161/jaha.119.012047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Ischemia/reperfusion (I/R) injury is a critical issue in the development of treatment strategies for ischemic heart disease. MURC (muscle‐restricted coiled‐coil protein)/Cavin‐4 (caveolae‐associated protein 4), which is a component of caveolae, is involved in the pathophysiology of dilated cardiomyopathy and cardiac hypertrophy. However, the role of MURC in cardiac I/R injury remains unknown. Methods and Results The systems network genomic analysis based on PC‐corr network inference on microarray data between wild‐type and MURC knockout mouse hearts predicted a network of discriminating genes associated with reactive oxygen species. To demonstrate the prediction, we analyzed I/R‐injured mouse hearts. MURC deletion decreased infarct size and preserved heart contraction with reactive oxygen species–related molecule EGR1 (early growth response protein 1) and DDIT4 (DNA‐damage‐inducible transcript 4) suppression in I/R‐injured hearts. Because PC‐corr network inference integrated with a protein–protein interaction network prediction also showed that MURC is involved in the apoptotic pathway, we confirmed the upregulation of STAT3 (signal transducer and activator of transcription 3) and BCL2 (B‐cell lymphoma 2) and the inactivation of caspase 3 in I/R‐injured hearts of MURC knockout mice compared with those of wild‐type mice. STAT3 inhibitor canceled the cardioprotective effect of MURC deletion in I/R‐injured hearts. In cardiomyocytes exposed to hydrogen peroxide, MURC overexpression promoted apoptosis and MURC knockdown inhibited apoptosis. STAT3 inhibitor canceled the antiapoptotic effect of MURC knockdown in cardiomyocytes. Conclusions Our findings, obtained by prediction from systems network genomic analysis followed by experimental validation, suggested that MURC modulates cardiac I/R injury through the regulation of reactive oxygen species–induced cell death and STAT3‐meditated antiapoptosis. Functional inhibition of MURC may be effective in reducing cardiac I/R injury.
Collapse
Affiliation(s)
- Masahiro Nishi
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan.,Department of Pathology and Cell Regulation Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC) Center for Molecular and Cellular Bioengineering (CMCB) Center for Systems Biology Dresden Department of Physics Technische Universität Dresden Dresden Germany.,Tsinghua Laboratory of Brain and Intelligence Tsinghua University Beijing China
| | - Sara Ciucci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC) Center for Molecular and Cellular Bioengineering (CMCB) Center for Systems Biology Dresden Department of Physics Technische Universität Dresden Dresden Germany
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Katsura Mizushima
- Department of Molecular Gastroenterology and Hepatology Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| |
Collapse
|