1
|
Chen S, Li X, Li Y, He X, Bryant M, Qin X, Li F, Seo JE, Guo X, Mei N, Guo L. The involvement of hepatic cytochrome P450s in the cytotoxicity of lapatinib. Toxicol Sci 2023; 197:69-78. [PMID: 37788138 PMCID: PMC10734604 DOI: 10.1093/toxsci/kfad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Lapatinib, an oral tyrosine kinase inhibitor used as a first-line treatment for HER2-positive breast cancer, has been reported to be associated with hepatotoxicity; however, the underlying mechanisms remain unclear. In this study, we report that lapatinib causes cytotoxicity in multiple types of hepatic cells, including primary human hepatocytes, HepaRG cells, and HepG2 cells. A 24-h treatment with lapatinib induced cell cycle disturbances, apoptosis, and DNA damage, and decreased the protein levels of topoisomerase in HepG2 cells. We investigated the role of cytochrome P450 (CYP)-mediated metabolism in lapatinib-induced cytotoxicity using our previously established HepG2 cell lines, which express each of 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7). We demonstrate that lapatinib is metabolized by CYP1A1, 3A4, 3A5, and 3A7. Among these, lapatinib-induced cytotoxicity and DNA damage were attenuated in cells overexpressing CYP3A5 or 3A7. Additionally, we measured the production of three primary metabolites of lapatinib (O-dealkylated lapatinib, N-dealkylated lapatinib, and N-hydroxy lapatinib) in CYP1A1-, 3A4-, 3A5-, and 3A7-overexpressing HepG2 cells. We compared the cytotoxicity of lapatinib and its 3 metabolites in primary human hepatocytes, HepaRG cells, and HepG2 cells and demonstrated that N-dealkylated lapatinib is more toxic than the parent drug and the other metabolites. Taken together, our results indicate that lapatinib-induced cytotoxicity involves multiple mechanisms, such as apoptosis and DNA damage; that N-dealkylated lapatinib is a toxic metabolite contributing to the toxic effect of lapatinib; and that CYP3A5- and 3A7-mediated metabolism plays a role in attenuating the cytotoxicity of lapatinib.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Xuan Qin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| |
Collapse
|
2
|
Chen Y, Guan S, Guan Y, Tang S, Zhou Y, Wang X, Bi H, Huang M. Novel Clinical Biomarkers for Drug-Induced Liver Injury. Drug Metab Dispos 2022; 50:671-684. [PMID: 34903588 DOI: 10.1124/dmd.121.000732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a critical clinical issue and has been a treatment challenge today as it was in the past. However, the traditional biomarkers or indicators are insufficient to predict the risks and outcome of patients with DILI due to its poor specificity and sensitivity. Recently, the development of high-throughput technologies, especially omics and multiomics has sparked growing interests in identification of novel clinical DILI biomarkers, many of which also provide a mechanistic insight. Accordingly, in this minireview, we summarize recent advances in novel clinical biomarkers for DILI prediction, diagnosis, and prognosis and highlight the limitations or challenges involved in biomarker discovery or its clinical translation. Although huge work has been done, most reported biomarkers lack comprehensive information and more specific DILI biomarkers are still needed to complement the traditional biomarkers such as alanine aminotransferase (ALT) or aspartate transaminase (AST) in clinical decision-making. SIGNIFICANCE STATEMENT: This current review outlines an overview of novel clinical biomarkers for drug-induced liver injury (DILI) identified in clinical retrospective or prospective clinical analysis. Many of these biomarkers provide a mechanistic insight and are promising to complement the traditional DILI biomarkers. This work also highlights the limitations or challenges involved in biomarker discovery or its clinical translation.
Collapse
Affiliation(s)
- Youhao Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Shaoxing Guan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Yanping Guan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Siyuan Tang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Yanying Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Xueding Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Huichang Bi
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Min Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| |
Collapse
|
3
|
Jiang H, Jin Y, Yan H, Xu Z, Yang B, He Q, Luo P. Hepatotoxicity of FDA-approved small molecule kinase inhibitors. Expert Opin Drug Saf 2020; 20:335-348. [PMID: 33356646 DOI: 10.1080/14740338.2021.1867104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Given their importance in cellular processes and association with numerous diseases, protein kinases have emerged as promising targets for drugs. The FDA has approved greater than fifty small molecule kinase inhibitors (SMKIs) since 2001. Nevertheless, severe hepatotoxicity and related fatal cases have grown as a potential challenge in the advancement of these drugs, and the identification and diagnosis of drug-induced liver injury (DILI) are thorny problems for clinicians.Areas covered: This article summarizes the progression and analyzes the significant features in the study of SMKI hepatotoxicity, including clinical observations and investigations of the underlying mechanisms.Expert opinion: The understanding of SMKI-associated hepatotoxicity relies on the development of preclinical models and improvement of clinical assessment. With a full understanding of the role of inflammation in DILI and the mediating role of cytokines in inflammation, cytokines are promising candidates as sensitive and specific biomarkers for DILI. The emergence of three-dimensional spheroid models demonstrates potential use in providing clinically relevant data and predicting hepatotoxicity of SMKIs.
Collapse
Affiliation(s)
| | | | - Hao Yan
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| |
Collapse
|
4
|
Tangamornsuksan W, Kongkaew C, Scholfield CN, Subongkot S, Lohitnavy M. HLA-DRB1*07:01 and lapatinib-induced hepatotoxicity: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2019; 20:47-56. [PMID: 31383939 DOI: 10.1038/s41397-019-0092-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/28/2018] [Accepted: 07/18/2019] [Indexed: 01/21/2023]
Abstract
Associations between HLA-DRB1*07:01 and lapatinib-induced hepatotoxicity have been reported. To consolidate the results from all available reports in scientific databases, systematic review and meta-analysis techniques were used to quantify these associations. Studies investigating associations between HLA-DRB1*07:01 and lapatinib-induced hepatotoxicity were systematically searched in PubMed, Human Genome Epidemiology Network, and the Cochrane Library. Primary outcomes were the associations between HLA-DRB1*07:01 and lapatinib-induced hepatotoxicity. Overall odds ratios (ORs) with the corresponding 95%CIs were calculated using a random-effect model to determine the associations between HLA-DRB1*07:01 and lapatinib-induced hepatotoxicity. A clear association between HLA-DRB1*07:01 and lapatinib-induced hepatotoxicity was identified in our analyses. The summary OR was 6.23 (95%CI = 4.11-9.45). Similar associations were also found in the subgroup analyses by lapatinib treatment regimens. ORs were 10.04 (95%CI = 6.15-16.39), 8.65 (95%CI = 4.52-16.58), and 3.88 (95%CI = 2.20-6.82) in the lapatinib group, lapatinib + trastuzumab group, and lapatinib + chemotherapy or lapatinib + trastuzumab + chemotherapy group, respectively. Since HLA-DRB1*07:01 is associated with lapatinib-induced hepatotoxicity, genetic screening of HLA-DRB1*07:01 in breast cancer patients prior to lapatinib therapy is warranted for patient safety. In addition, further studies should define the risk of HLA-DRB1*07:01 and lapatinib-induced hepatotoxicity in specific ethnicities.
Collapse
Affiliation(s)
- Wimonchat Tangamornsuksan
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chuenjid Kongkaew
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Centre for Safety and Quality in Health, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - C N Scholfield
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Suphat Subongkot
- Clinical Pharmacy Division, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Manupat Lohitnavy
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand. .,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand. .,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
5
|
Interaction of Nevirapine with the Peptide Binding Groove of HLA-DRB1*01:01 and Its Effect on the Conformation of HLA-Peptide Complex. Int J Mol Sci 2018; 19:ijms19061660. [PMID: 29867033 PMCID: PMC6032195 DOI: 10.3390/ijms19061660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/11/2023] Open
Abstract
Human leukocyte antigen (HLA)-DRB1*01:01 has been shown to be involved in nevirapine-induced hepatic hypersensitivity reactions. In the present study, in silico docking simulations and molecular dynamics simulations were performed to predict the interaction mode of nevirapine with the peptide binding groove of HLA-DRB1*01:01 and its possible effect on the position and orientation of the ligand peptide derived from hemagglutinin (HA). In silico analyses suggested that nevirapine interacts with HLA-DRB1*01:01 around the P4 pocket within the peptide binding groove and the HA peptide stably binds on top of nevirapine at the groove. The analyses also showed that binding of nevirapine at the groove will significantly change the inter-helical distances of the groove. An in vitro competitive assay showed that nevirapine (1000 μM) increases the binding of the HA peptide to HLA-DRB1*01:01 in an allele-specific manner. These results indicate that nevirapine might interact directly with the P4 pocket and modifies its structure, which could change the orientation of loaded peptides and the conformation of HLA-DRB1*01:01; these changes could be distinctively recognized by T-cell receptors. Through this molecular mechanism, nevirapine might stimulate the immune system, resulting in hepatic hypersensitivity reactions.
Collapse
|
6
|
Sullivan A, Watkinson J, Waddington J, Park BK, Naisbitt DJ. Implications of HLA-allele associations for the study of type IV drug hypersensitivity reactions. Expert Opin Drug Metab Toxicol 2018; 14:261-274. [DOI: 10.1080/17425255.2018.1441285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A. Sullivan
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - J. Watkinson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - J. Waddington
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - B. K. Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - D. J. Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| |
Collapse
|
7
|
In Silico and In Vitro Analysis of Interaction between Ximelagatran and Human Leukocyte Antigen (HLA)-DRB1*07:01. Int J Mol Sci 2017; 18:ijms18040694. [PMID: 28338626 PMCID: PMC5412280 DOI: 10.3390/ijms18040694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022] Open
Abstract
Idiosyncratic ximelagatran-induced hepatotoxicity has been reported to be associated with human leukocyte antigen (HLA)-DRB1*07:01 and ximelagatran has been reported to inhibit the binding of the ligand peptide to HLA-DRB1*07:01 in vitro. In order to predict the possible interaction modes of ximelagatran with HLA-DR molecules, in silico docking simulations were performed. Molecular dynamics (MD) simulations were also performed to predict the effect of ximelagatran on the binding mode of the ligand peptide to HLA-DRB1*07:01. A series of in silico simulations supported the inhibitory effect of ximelagatran on the binding of the ligand peptide to HLA-DRB1*07:01 in vitro. Furthermore, direct interactions of ximelagatran with HLA-DR molecules were evaluated in vitro, which supported the simulated interaction mode of ximelagatran with HLA-DRB1*07:01. These results indicated that ximelagatran directly interacts with the peptide binding groove of HLA-DRB1*07:01 and competes with the ligand peptide for the binding site, which could alter the immune response and lead to the idiosyncratic ximelagatran-induced hepatotoxicity.
Collapse
|
8
|
Hirayama N. Docking simulations between drugs and HLA molecules associated with idiosyncratic drug toxicity. Drug Metab Pharmacokinet 2017; 32:31-39. [DOI: 10.1016/j.dmpk.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/10/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
|
9
|
Human leukocyte antigen and idiosyncratic adverse drug reactions. Drug Metab Pharmacokinet 2017; 32:21-30. [DOI: 10.1016/j.dmpk.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
|
10
|
Towles JK, Clark RN, Wahlin MD, Uttamsingh V, Rettie AE, Jackson KD. Cytochrome P450 3A4 and CYP3A5-Catalyzed Bioactivation of Lapatinib. Drug Metab Dispos 2016; 44:1584-97. [PMID: 27450182 PMCID: PMC5034700 DOI: 10.1124/dmd.116.070839] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/21/2016] [Indexed: 01/14/2023] Open
Abstract
Metabolic activation of the dual-tyrosine kinase inhibitor lapatinib by cytochromes CYP3A4 and CYP3A5 has been implicated in lapatinib-induced idiosyncratic hepatotoxicity; however, the relative enzyme contributions have not been established. The objective of this study was to examine the roles of CYP3A4 and CYP3A5 in lapatinib bioactivation leading to a reactive, potentially toxic quinoneimine. Reaction phenotyping experiments were performed using individual human recombinant P450 enzymes and P450-selective chemical inhibitors. Lapatinib metabolites and quinoneimine-glutathione (GSH) adducts were analyzed using liquid chromatography-tandem mass spectrometry. A screen of cDNA-expressed P450s confirmed that CYP3A4 and CYP3A5 are the primary enzymes responsible for quinoneimine-GSH adduct formation using lapatinib or O-dealkylated lapatinib as the substrate. The mean kinetic parameters (Km and kcat) of lapatinib O-dealkylation revealed that CYP3A4 was 5.2-fold more efficient than CYP3A5 at lapatinib O-dealkylation (CYP3A4 kcat/Km = 6.8 μM(-1) min(-1) versus CYP3A5 kcat/Km = 1.3 μM(-1) min(-1)). Kinetic analysis of GSH adduct formation indicated that CYP3A4 was also 4-fold more efficient at quinoneimine-GSH adduct formation as measured by kcat (maximum relative GSH adduct levels)/Km (CYP3A4 = 0.0082 vs. CYP3A5 = 0.0021). In human liver microsomal (HLM) incubations, CYP3A4-selective inhibitors SR-9186 and CYP3cide reduced formation of GSH adducts by 78% and 72%, respectively, compared with >90% inhibition by the pan-CYP3A inhibitor ketoconazole. The 16%-22% difference between CYP3A- and CYP3A4-selective inhibition indicates the involvement of remaining CYP3A5 activity in generating reactive metabolites from lapatinib in pooled HLMs. Collectively, these findings support the conclusion that both CYP3A4 and CYP3A5 are quantitatively important contributors to lapatinib bioactivation.
Collapse
Affiliation(s)
- Joanna K Towles
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences. Nashville, Tennessee (J.K.T., R.N.C., K.D.J.); Department of Medicinal Chemistry, University of Washington School of Pharmacy, Seattle, Washington (M.D.W., A.E.R); and CoNCERT Pharmaceuticals, Inc., Lexington, Massachusetts (V.U.)
| | - Rebecca N Clark
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences. Nashville, Tennessee (J.K.T., R.N.C., K.D.J.); Department of Medicinal Chemistry, University of Washington School of Pharmacy, Seattle, Washington (M.D.W., A.E.R); and CoNCERT Pharmaceuticals, Inc., Lexington, Massachusetts (V.U.)
| | - Michelle D Wahlin
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences. Nashville, Tennessee (J.K.T., R.N.C., K.D.J.); Department of Medicinal Chemistry, University of Washington School of Pharmacy, Seattle, Washington (M.D.W., A.E.R); and CoNCERT Pharmaceuticals, Inc., Lexington, Massachusetts (V.U.)
| | - Vinita Uttamsingh
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences. Nashville, Tennessee (J.K.T., R.N.C., K.D.J.); Department of Medicinal Chemistry, University of Washington School of Pharmacy, Seattle, Washington (M.D.W., A.E.R); and CoNCERT Pharmaceuticals, Inc., Lexington, Massachusetts (V.U.)
| | - Allan E Rettie
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences. Nashville, Tennessee (J.K.T., R.N.C., K.D.J.); Department of Medicinal Chemistry, University of Washington School of Pharmacy, Seattle, Washington (M.D.W., A.E.R); and CoNCERT Pharmaceuticals, Inc., Lexington, Massachusetts (V.U.)
| | - Klarissa D Jackson
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences. Nashville, Tennessee (J.K.T., R.N.C., K.D.J.); Department of Medicinal Chemistry, University of Washington School of Pharmacy, Seattle, Washington (M.D.W., A.E.R); and CoNCERT Pharmaceuticals, Inc., Lexington, Massachusetts (V.U.)
| |
Collapse
|
11
|
|