1
|
Power K, Leandri R, Federico G, De Vico G, Leonardi L. Ferritinophagy: a possible new iron-related metabolic target in canine osteoblastic osteosarcoma. Front Vet Sci 2025; 12:1546872. [PMID: 40196812 PMCID: PMC11973301 DOI: 10.3389/fvets.2025.1546872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Canine osteosarcomas (COS) are the most common bone tumors in dogs, characterized by high metastatic rates, poor prognosis, and poor responsiveness to routine therapies, which highlights the need for new treatment targets. In this context, the metabolism of neoplastic cells represents an increasingly studied element, as cancer cells depend on particular metabolic pathways that are also elements of vulnerability. Among these, tumor cells (TCs) show higher iron requirements to sustain proliferation (so-called iron addiction), which are achieved by increasing iron uptake and/or by activating ferritinophagy, a process mediated by the Nuclear receptor Co-Activator 4 (NCOA4) leading to iron mobilization from ferritin (Ft) deposits. Previous studies have shown that COS cells overexpress Transferrin Receptor 1 (TfR1) to increase iron uptake. In this study we evaluated the immunohistochemical expression of ferritinophagy-related proteins, namely Ferritin Heavy chain (FTH1) and NCOA4, and proliferating cell nuclear antigen (PCNA) in canine normal bone and canine osteoblastic osteosarcoma (COOS) samples. Normal samples revealed negative/weak immunoreactivity for FTH1, NCOA4 and PCNA in <10% of osteocytes. In COOS samples the majority of neoplastic cells showed immunoreactivity to FTH1, NCOA4 and PCNA. Our data suggest that the activation of ferritinophagy by COOS cells responds to the need for feed their "iron addiction." These data, though preliminary, further suggest that targeting iron metabolism represents a new potential strategy worthy of further study to be transferred into clinical practice.
Collapse
Affiliation(s)
- Karen Power
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rebecca Leandri
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giorgia Federico
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Gionata De Vico
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Smith CS, Underwood DJ, Gordon A, Pyne MJ, Smyth A, Genge B, Driver L, Mayer DG, Oakey J. Identification and epidemiological analysis of a putative novel hantavirus in Australian flying foxes. Virus Genes 2025; 61:71-80. [PMID: 39392529 PMCID: PMC11787259 DOI: 10.1007/s11262-024-02113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
In July 2017, an investigation into the cause of neurological signs in a black flying fox (Pteropus alecto, family Pteropodidae) identified a putative novel hantavirus (Robina virus, ROBV, order Bunyavirales, family Hantaviridae, genus Mobatvirus) in its brain. Analysis of the evolutionary relationship between other hantaviruses using maximum-likelihood, a systematic Bayesian clustering approach, and a minimum spanning tree, all suggest that ROBV is most closely related to another Mobatvirus, Quezon virus, previously identified in the lung of a Philippine frugivorous bat (Rousettus amplexicaudatus, also family Pteropodidae). Subsequently, between March 2018 and October 2023, a total of 495 bats were opportunistically screened for ROBV with an experimental qRT-PCR. The total prevalence of ROBV RNA detected in Pteropus spp. was 4.2% (95% CI 2.8-6.4%). Binomial modelling identified that there was substantial evidence supporting an increase (P = 0.033) in the detection of ROBV RNA in bats in 2019 and 2020 suggesting of a possible transient epidemic. There was also moderate evidence to support the effect of season (P = 0.064), with peak detection in the cooler seasons, autumn, and winter, possibly driven by physiological and ecological factors similar to those already identified for other bat-borne viruses. This is Australia's first reported putative hantavirus and its identification could expand the southern known range of hantaviruses in Australasia.
Collapse
Affiliation(s)
- Craig S Smith
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia.
| | - Darren J Underwood
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| | - Anita Gordon
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| | - Michael J Pyne
- Currumbin Wildlife Hospital Foundation, Currumbin, QLD, Australia
| | - Anna Smyth
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| | - Benjamin Genge
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| | - Luke Driver
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| | - David G Mayer
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| | - Jane Oakey
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Dasgupta A, Nandi S, Gupta S, Roy S, Das C. To Ub or not to Ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195033. [PMID: 38750882 DOI: 10.1016/j.bbagrm.2024.195033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
A dynamic array of histone post-translational modifications (PTMs) regulate diverse cellular processes in the eukaryotic chromatin. Among them, histone ubiquitination is particularly complex as it alters nucleosome surface area fostering intricate cross-talk with other chromatin modifications. Ubiquitin signaling profoundly impacts DNA replication, repair, and transcription. Histones can undergo varied extent of ubiquitination such as mono, multi-mono, and polyubiquitination, which brings about distinct cellular fates. Mechanistic studies of the ubiquitin landscape in chromatin have unveiled a fascinating tapestry of events that orchestrate gene regulation. In this review, we summarize the key contributors involved in mediating different histone ubiquitination and deubiquitination events, and discuss their mechanism which impacts cell transcriptional identity and DNA damage response. We also focus on the proteins bearing epigenetic reader modules critical in discerning site-specific histone ubiquitination, pivotal for establishing complex epigenetic crosstalk. Moreover, we highlight the role of histone ubiquitination in different human diseases including neurodevelopmental disorders and cancer. Overall the review elucidates the intricate orchestration of histone ubiquitination impacting diverse cellular functions and disease pathogenesis, and provides insights into the current challenges of targeting them for therapeutic interventions.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sayan Gupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Simpson S, Rizvanov AA, Jeyapalan JN, de Brot S, Rutland CS. Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Front Vet Sci 2022; 9:965391. [PMID: 36570509 PMCID: PMC9773846 DOI: 10.3389/fvets.2022.965391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jennie N. Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Al-Nadaf S, Peacott-Ricardos KS, Dickinson PJ, Rebhun RB, York D. Expression and therapeutic targeting of BMI1 in canine gliomas. Vet Comp Oncol 2022; 20:871-880. [PMID: 35833892 DOI: 10.1111/vco.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022]
Abstract
The BMI1 proto-oncogene, polycomb ring finger protein (BMI1) is a key component of the epigenetic polycomb repressor complex 1, and has been associated with aggressive behavior and chemotherapeutic resistance in various malignances including human gliomas. Similar to humans, spontaneous canine gliomas carry a poor prognosis with limited therapeutic options. BMI1 expression and the effects of BMI1 inhibition have not been evaluated in canine gliomas. Here, we demonstrate that BMI1 is highly expressed in canine gliomas. Although increased BMI1 protein expression correlated with higher glioma grade in western blot assays, this correlation was not observed in a larger sample set using immunohistochemical analysis. The BMI1 inhibitor, PTC-209, suppressed BMI1 expression in established canine glioma cell lines and resulted in antiproliferative activity when used alone and in combination with chemotherapeutic agents. PTC-209 targeting of BMI1 activated the RB pathway through downregulation of total and phosphorylated RB, independent of INK4A/ARF signaling, likely through BMI1-inhibition mediated upregulation of p21. These data support the rationale for targeting of BMI1 signaling and the use of canine glioma as a translational therapeutic model for human disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sami Al-Nadaf
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kyle S Peacott-Ricardos
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Peter J Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Daniel York
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
6
|
Wang Q, Wu Y, Lin M, Wang G, Liu J, Xie M, Zheng B, Shen C, Shen J. BMI1 promotes osteosarcoma proliferation and metastasis by repressing the transcription of SIK1. Cancer Cell Int 2022; 22:136. [PMID: 35346195 PMCID: PMC8961961 DOI: 10.1186/s12935-022-02552-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Abstract
Background
Osteosarcoma (OS) is the most common malignant tumor of bone, and the clinical efficacy of current treatments and associated survival rates need to be further improved by employing novel therapeutic strategies. Although various studies have shown that BMI1 protein is universally upregulated in OS cells and tissues, its specific role and underlying mechanism have not yet been fully explored.
Methods
Expression of BMI1 protein in OS cells was detected by western blot. The effect of BMI1 on proliferation and migration of OS cells (143B and U-2OS cell lines) was investigated in vitro using CCK-8, colony formation and transwell assays, and in vivo using subcutaneous tumorigenesis and lung metastasis assays in xenograft nude mice. Expression of epithelial–mesenchymal transition (EMT)-associated proteins was detected by immunofluorescence imaging. Bioinformatic analysis was performed using ENCODE databases to predict downstream targets of BMI1. SIK1 mRNA expression in osteosarcoma cells was detected by quantitative real-time reverse transcription PCR (qPCR). Chromatin immunoprecipitation-qPCR (ChIP-qPCR) was used to investigate expression of BMI1-associated, RING1B-associated, H2AK119ub-associated and H3K4me3-associated DNA at the putative binding region of BMI1 on the SIK1 promoter in OS cells.
Results
Using both in vitro and in vivo experimental approaches, we found that BMI1 promotes OS cell proliferation and metastasis. The tumor suppressor SIK1 was identified as the direct target gene of BMI1 in OS cells. In vitro experiments demonstrated that SIK1 could inhibit proliferation and migration of OS cells. Inhibition of SIK1 largely rescued the altered phenotypes of BMI1-deficient OS cells. Mechanistically, we demonstrated that BMI1 directly binds to the promoter region of SIK1 in a complex with RING1B to promote monoubiquitination of histone H2A at lysine 119 (H2AK119ub) and inhibit H3K4 trimethylation (H3K4me3), resulting in inhibition of SIK1 transcription. We therefore suggest that BMI1 promotes OS cell proliferation and metastasis by inhibiting SIK1.
Conclusions
Our results reveal a novel molecular mechanism of OS development promoted by BMI1 and provides a new potential target for OS treatment.
Collapse
|
7
|
Enhanced Cytotoxic Effect of Doxorubicin Conjugated to Glutathione-Stabilized Gold Nanoparticles in Canine Osteosarcoma-In Vitro Studies. Molecules 2021; 26:molecules26123487. [PMID: 34201296 PMCID: PMC8227216 DOI: 10.3390/molecules26123487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OSA) is the most common malignant bone neoplasia in humans and dogs. In dogs, treatment consists of surgery in combination with chemotherapy (mostly carboplatin and/or doxorubicin (Dox)). Chemotherapy is often rendered ineffective by multidrug resistance. Previous studies have revealed that Dox conjugated with 4 nm glutathione-stabilized gold nanoparticles (Au-GSH-Dox) enhanced the anti-tumor activity and cytotoxicity of Dox in Dox-resistant feline fibrosarcoma cell lines exhibiting high P-glycoprotein (P-gp) activity. The present study investigated the influence of Au-GSH-Dox on the canine OSA cell line D17 and its relationship with P-gp activity. A human Dox-sensitive OSA cell line, U2OS, served as the negative control. Au-GSH-Dox, compared to free Dox, presented a greater cytotoxic effect on D17 (IC50 values for Au-GSH-Dox and Dox were 7.9 μg/mL and 15.2 μg/mL, respectively) but not on the U2OS cell line. All concentrations of Au-GSH (ranging from 10 to 1000 μg/mL) were non-toxic in both cell lines. Inhibition of the D17 cell line with 100 μM verapamil resulted in an increase in free Dox but not in intracellular Au-GSH-Dox. The results indicate that Au-GSH-Dox may act as an effective drug in canine OSA by bypassing P-gp.
Collapse
|
8
|
Molecular Characterisation of Canine Osteosarcoma in High Risk Breeds. Cancers (Basel) 2020; 12:cancers12092405. [PMID: 32854182 PMCID: PMC7564920 DOI: 10.3390/cancers12092405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dogs develop osteosarcoma (OSA) and the disease process closely resembles that of human OSA. OSA has a poor prognosis in both species and disease-free intervals and cure rates have not improved in recent years. Gene expression in canine OSAs was compared with non-tumor tissue utilising RNA sequencing, validated by qRT-PCR and immunohistochemistry (n = 16). Polymorphic polyglutamine (polyQ) tracts in the androgen receptor (AR/NR3C4) and nuclear receptor coactivator 3 (NCOA3) genes were investigated in control and OSA patients using polymerase chain reaction (PCR), Sanger sequencing and fragment analysis (n = 1019 Rottweilers, 379 Irish Wolfhounds). Our analysis identified 1281 significantly differentially expressed genes (>2 fold change, p < 0.05), specifically 839 lower and 442 elevated gene expression in osteosarcoma (n = 3) samples relative to non-malignant (n = 4) bone. Enriched pathways and gene ontologies were identified, which provide insight into the molecular pathways implicated in canine OSA. Expression of a subset of these genes (SLC2A1, DKK3, MMP3, POSTN, RBP4, ASPN) was validated by qRTPCR and immunohistochemistry (MMP3, DKK3, SLC2A1) respectively. While little variation was found in the NCOA3 polyQ tract, greater variation was present in both polyQ tracts in the AR, but no significant associations in length were made with OSA. The data provides novel insights into the molecular mechanisms of OSA in high risk breeds. This knowledge may inform development of new prevention strategies and treatments for OSA in dogs and supports utilising spontaneous OSA in dogs to improve understanding of the disease in people.
Collapse
|
9
|
Evaluation of canonical Hedgehog signaling pathway inhibition in canine osteosarcoma. PLoS One 2020; 15:e0231762. [PMID: 32348319 PMCID: PMC7190150 DOI: 10.1371/journal.pone.0231762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
Canine osteosarcoma (OSA), the most common canine primary bone malignancy, has a highly aggressive biologic behavior. Despite current standard of care therapies, including amputation and adjuvant chemotherapy, most dogs still succumb to metastatic disease. Further investigations into molecular mechanisms and pathways driving OSA are needed to improve therapeutic options. The Hedgehog (HH) cell-signaling pathway has demonstrated involvement in human OSA. Several studies in canine OSA have found changes in expression of some HH pathway genes and demonstrated a role for HH transcription factors. However, the role of this pathway as well as the translational value of its targeting in canine OSA are still undefined. The objectives of this study were to determine the expression of HH components directly in canine OSA tissues and to evaluate the biologic impact of HH signaling inhibition in canine OSA cells. In situ hybridization was used to detect HH family mRNA expression in archived canine OSA tissues and revealed variable expression levels of these mRNAs in canine OSA tissues. The effect of a commercially available Smoothened inhibitor, vismodegib, was studied in established canine OSA cell lines. Alterations in cellular growth as well as assessment of downstream HH targets were evaluated. Although changes in cell growth were noted following Smoothened inhibition, inconsistent decreases in target gene expression were found. While treatment with vismodegib had a negative impact on canine OSA cell growth and viability, the mechanism remains unclear. Further studies are warranted to evaluate the clinical significance of canonical HH signaling in canine OSA.
Collapse
|
10
|
Cueni C, Nytko KJ, Thumser-Henner P, Weyland MS, Rohrer Bley C. Methadone does not potentiate the effect of doxorubicin in canine tumour cell lines. Vet Med Sci 2020; 6:283-289. [PMID: 32306524 PMCID: PMC7397897 DOI: 10.1002/vms3.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Opioid receptor activation was shown to enhance the efficacy of anti‐neoplastic drugs in several human cancer cell lines. In these cell lines, doxorubicin increased the number of opioid receptors and methadone concurrently enhanced cellular doxorubicin uptake. Triggered through lay press and media, animal owners started to challenge veterinary oncologists with questions about methadone use in anti‐cancer therapy. Especially in veterinary medicine, where side effects of chemotherapy are tolerated to a lesser extent and hence smaller doses are given, agents potentiating chemotherapeutic agents would be an optimal approach to treatment. Canine transitional cell carcinoma cells (TCC, K9TCC), canine osteosarcoma cells (OSA, Abrams) and canine hemangiosarcoma cells (HSA, DAL‐4) were incubated with different combinations of methadone, buprenorphine and doxorubicin, in order to test inhibition of cell proliferation. Opioid receptor density was assessed with fluorescence‐activated cell sorting in drug native and doxorubicin pretreated cells. In TCC and OSA cell lines opioid receptor density increased after doxorubicin pretreatment. In combination treatment, however, we did not find significant potentiation of doxorubicin's inhibitory effect on proliferation in these cell lines. Neither was there a significant increase of the effect of doxorubicin when the opioids were added 24 hr before doxorubicin. Hence, we could not confirm the hypothesis that opioids increase the anti‐proliferative effect of the anti‐neoplastic drug doxorubicin in any of these canine tumour cell lines. The lack of effect on a cellular level does not warrant a clinical approach to use opioids together with doxorubicin in dogs with cancer.
Collapse
Affiliation(s)
- Claudia Cueni
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.,Center for Clinical Studies at the Vetsuisse Faculty of the University of Zurich, Zurich,, Switzerland
| | - Katarzyna J Nytko
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.,Center for Clinical Studies at the Vetsuisse Faculty of the University of Zurich, Zurich,, Switzerland
| | - Pauline Thumser-Henner
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.,Center for Clinical Studies at the Vetsuisse Faculty of the University of Zurich, Zurich,, Switzerland
| | - Mathias S Weyland
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.,ZHAW School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Alegre F, Ormonde AR, Snider KM, Woolard K, Yu AM, Wittenburg LA. A genetically engineered microRNA-34a prodrug demonstrates anti-tumor activity in a canine model of osteosarcoma. PLoS One 2018; 13:e0209941. [PMID: 30596759 PMCID: PMC6312226 DOI: 10.1371/journal.pone.0209941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OSA) represents the most common primary bone tumor in humans and pet dogs. Little progress has been made with regard to viable treatment options in the past three decades and patients presenting with metastatic disease continue to have a poor prognosis. Recent mouse studies have suggested that microRNA-34a (miR-34a) may have anti-tumor activities in human OSA models. Due to the conservation of microRNA across species, we hypothesized that a bioengineered miR-34a prodrug (tRNA/miR-34a) would have similar effects in canine OSA, providing a valuable preclinical model for development of this therapeutic modality. Using a panel of canine OSA cell lines, we found that tRNA/miR-34a reduced viability, clonogenic growth, and migration and invasion while increasing tumor cell apoptosis. Furthermore, canine OSA cells successfully process the tRNA/miR-34a into mature miR-34a which reduces expression of target proteins such as platelet derived growth factor receptor alpha (PDGFRα), Notch1 and vascular endothelial growth factor (VEGF). Additionally, our subcutaneous OSA xenograft model demonstrated in vivo tumor growth delay, increased necrosis and apoptosis by tRNA/miR-34a, and decreased cellular proliferation ability. Taken together, these data support that this novel microRNA-based therapy may possess clinical utility in a spontaneously-occurring large animal model of OSA, which can then serve to inform the clinical development of this therapy for human OSA patients.
Collapse
Affiliation(s)
- Fernando Alegre
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Amanda R Ormonde
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Kellie M Snider
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Kevin Woolard
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Luke A Wittenburg
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
12
|
Kim M, Lee S, Park WH, Suh DH, Kim K, Kim YB, No JH. Silencing Bmi1 expression suppresses cancer stemness and enhances chemosensitivity in endometrial cancer cells. Biomed Pharmacother 2018; 108:584-589. [PMID: 30243092 DOI: 10.1016/j.biopha.2018.09.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bmi1, a polycomb group gene, is essential for self-renewal of stem cells and is frequently upregulated in various cancer cells. We aimed to investigate the effect of Bmi1 silencing on cancer stemness and chemosensitivity in endometrial cancer using targeted siRNA approach in HEC1A and Ishikawa cells. METHODS Cell viability after treatment with Bmi1 siRNA was assessed using the MTT assay, and cell apoptosis was visualized using the TdT-mediated dUTP nick-end labeling (TUNEL) method. Western blotting, migration assays and invasion assays were performed to detect changes in the stem-like properties of cancer cells. To evaluate the anticancer effect of Bmi1 silencing, HEC1A and Ishikawa cells were treated with 100 nM Bmi1 siRNA and/or 40 μM cisplatin. RESULTS In the MTT assay, compared to control, viability of HEC1A and Ishikawa cells significantly decreased after Bmi1 siRNA treatment in a dose-dependent manner. Bmi1 silencing using siRNA increased the expression of cleaved caspase-3 and cleaved poly adenosine diphosphate-ribose polymerase polymerase (PARP) as observed in the western blot analysis. Apoptosis significantly increased in the HEC1A and Ishikawa cells treated with 100 nM Bmi1 siRNA for 48 h than in the control cells in TUNEL assay. SOX2 and Oct4 expression decreased in the HEC1A and Ishikawa cells treated with Bmi1 siRNA, while E-cadherin expression increased. Further, migratory and invasive properties were significantly inhibited by Bmi1 siRNA treatment in both cell lines. Notably, viability of HEC1A and Ishikawa cells decreased more when they were concurrently treated with Bmi1 siRNA and cisplatin compared to when they were treated with Bmi1 siRNA or cisplatin alone. CONCLUSION Bmi1 silencing suppresses cancer stemness in HEC1A and Ishikawa cells. Concurrent treatment with Bmi1 siRNA and cisplatin resulted in additive anticancer effect with a cell line-specific pattern, which was higher than that shown by cisplatin treatment alone.
Collapse
Affiliation(s)
- Miseon Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Wook Ha Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
13
|
Simpson S, Dunning MD, de Brot S, Grau-Roma L, Mongan NP, Rutland CS. Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics. Acta Vet Scand 2017; 59:71. [PMID: 29065898 PMCID: PMC5655853 DOI: 10.1186/s13028-017-0341-9] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is relatively poor, with 5 year OSA survival rates in people not having improved in decades. For dogs, 1 year survival rates are only around ~ 45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human OSA. Finally, the current position of canine OSA genetic research is discussed and areas for additional work within the canine population are identified.
Collapse
|
14
|
Massimini M, Palmieri C, De Maria R, Romanucci M, Malatesta D, De Martinis M, Maniscalco L, Ciccarelli A, Ginaldi L, Buracco P, Bongiovanni L, Della Salda L. 17-AAG and Apoptosis, Autophagy, and Mitophagy in Canine Osteosarcoma Cell Lines. Vet Pathol 2016; 54:405-412. [PMID: 28438108 DOI: 10.1177/0300985816681409] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Canine osteosarcoma is highly resistant to current chemotherapy; thus, clarifying the mechanisms of tumor cell resistance to treatments is an urgent need. We tested the geldanamycin derivative 17-AAG (17-allylamino-17-demethoxygeldanamycin) prototype of Hsp90 (heat shock protein 90) inhibitors in 2 canine osteosarcoma cell lines, D22 and D17, derived from primary and metastatic tumors, respectively. With the aim to understand the interplay between cell death, autophagy, and mitophagy, in light of the dual effect of autophagy in regulating cancer cell viability and death, D22 and D17 cells were treated with different concentrations of 17-AAG (0.5 μM, 1 μM) for 24 and 48 hours. 17-AAG-induced apoptosis, necrosis, autophagy, and mitophagy were assessed by transmission electron microscopy, flow cytometry, and immunofluorescence. A simultaneous increase in apoptosis, autophagy, and mitophagy was observed only in the D22 cell line, while D17 cells showed low levels of apoptotic cell death. These results reveal differential cell response to drug-induced stress depending on tumor cell type. Therefore, pharmacological treatments based on proapoptotic chemotherapy in association with autophagy regulators would benefit from a predictive in vitro screening of the target cell type.
Collapse
Affiliation(s)
- M Massimini
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - C Palmieri
- 2 School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - R De Maria
- 3 Department of Veterinary Medicine, Animal Pathology, University of Turin, Grugliasco, Italy
| | - M Romanucci
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - D Malatesta
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - M De Martinis
- 4 Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - L Maniscalco
- 3 Department of Veterinary Medicine, Animal Pathology, University of Turin, Grugliasco, Italy
| | - A Ciccarelli
- 5 Faculty of Communication Sciences, University of Teramo, Teramo, Italy
| | - L Ginaldi
- 4 Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Buracco
- 3 Department of Veterinary Medicine, Animal Pathology, University of Turin, Grugliasco, Italy
| | - L Bongiovanni
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - L Della Salda
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
15
|
Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance. Tumour Biol 2016; 37:15107-15114. [DOI: 10.1007/s13277-016-5365-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022] Open
|
16
|
York D, Withers SS, Watson KD, Seo KW, Rebhun RB. Enrofloxacin enhances the effects of chemotherapy in canine osteosarcoma cells with mutant and wild-type p53. Vet Comp Oncol 2016; 15:1087-1100. [PMID: 27333821 DOI: 10.1111/vco.12250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022]
Abstract
Adjuvant chemotherapy improves survival time in dogs receiving adequate local control for appendicular osteosarcoma, but most dogs ultimately succumb to metastatic disease. The fluoroquinolone antibiotic enrofloxacin has been shown to inhibit survival and proliferation of canine osteosarcoma cells in vitro. Others have reported that fluoroquinolones may modulate cellular responses to DNA damaging agents and that these effects may be differentially mediated by p53 activity. We therefore determined p53 status and activity in three canine osteosarcoma cell lines and examined the effects of enrofloxacin when used alone or in combination with doxorubicin or carboplatin chemotherapy. Moresco and Abrams canine osteosarcoma cell lines contained mutations in p53, while no mutations were identified in the D17 cells or in a normal canine osteoblast cell line. The addition of enrofloxacin to either doxorubicin or carboplatin resulted in further reductions in osteosarcoma cell viability; this effect was apparent regardless of p53 mutational status or downstream activity.
Collapse
Affiliation(s)
- D York
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - S S Withers
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - K D Watson
- UC Davis School of Veterinary Medicine, William R. Pritchard Veterinary Medical Teaching Hospital, University of California-Davis, Davis, CA, USA
| | - K W Seo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejon, Korea
| | - R B Rebhun
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| |
Collapse
|