1
|
Liu Y, Li J, Liu Q. Inactivation of the CMAH gene and deficiency of Neu5Gc play a role in human brain evolution. Inflamm Regen 2025; 45:5. [PMID: 39920734 PMCID: PMC11806805 DOI: 10.1186/s41232-025-00368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
During human evolution, some genes were lost or silenced from the genome of hominins. These missing genes might be the key to the evolution of humans' unique cognitive skills. An inactivation mutation in CMP-N-acetylneuraminic acid hydroxylase (CMAH) was the result of natural selection. The inactivation of CMAH protected our ancestors from some pathogens and reduced the level of N-glycolylneuraminic acid (Neu5Gc) in brain tissue. Interestingly, the low level of Neu5Gc promoted the development of brain tissue, which may have played a role in human evolution. As a xenoantigen, Neu5Gc may have been involved in brain evolution by affecting neural conduction, neuronal development, and aging.
Collapse
Affiliation(s)
- Yuxin Liu
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Jinhong Li
- Department of Laboratory Medicine, Medical Technology and Engineering College, Fujian Medical University, Fuzhou, P.R. China
| | - Qicai Liu
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China.
- Vanke School of Public Health, National Graduate College for Engineers, Tsinghua University, Beijing, P.R. China.
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Medical University, Fuzhou, P.R. China.
- School of Biomedical Engineering, Tsinghua University, Beijing, P.R. China.
- Department of Reproductive Medicine Centre, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Wang Z, Nie X, Gao F, Tang Y, Ma Y, Zhang Y, Gao Y, Yang C, Ding J, Wang X. Increasing brain N-acetylneuraminic acid alleviates hydrocephalus-induced neurological deficits. CNS Neurosci Ther 2023; 29:3183-3198. [PMID: 37222223 PMCID: PMC10580356 DOI: 10.1111/cns.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 05/25/2023] Open
Abstract
AIMS This metabolomic study aimed to evaluate the role of N-acetylneuraminic acid (Neu5Ac) in the neurological deficits of normal pressure hydrocephalus (NPH) and its potential therapeutic effect. METHODS We analyzed the metabolic profiles of NPH using cerebrospinal fluid with multivariate and univariate statistical analyses in a set of 42 NPH patients and 38 controls. We further correlated the levels of differential metabolites with severity-related clinical parameters, including the normal pressure hydrocephalus grading scale (NPHGS). We then established kaolin-induced hydrocephalus in mice and treated them using N-acetylmannosamine (ManNAc), a precursor of Neu5Ac. We examined brain Neu5Ac, astrocyte polarization, demyelination, and neurobehavioral outcomes to explore its therapeutic effect. RESULTS Three metabolites were significantly altered in NPH patients. Only decreased Neu5Ac levels were correlated with NPHGS scores. Decreased brain Neu5Ac levels have been observed in hydrocephalic mice. Increasing brain Neu5Ac by ManNAc suppressed the activation of astrocytes and promoted their transition from A1 to A2 polarization. ManNAc also attenuated the periventricular white matter demyelination and improved neurobehavioral outcomes in hydrocephalic mice. CONCLUSION Increasing brain Neu5Ac improved the neurological outcomes associated with the regulation of astrocyte polarization and the suppression of demyelination in hydrocephalic mice, which may be a potential therapeutic strategy for NPH.
Collapse
Affiliation(s)
- Zhangyang Wang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaoqun Nie
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Fang Gao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Yanmin Tang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yiying Zhang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Jing Ding
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xin Wang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Xiang P, Chen Q, Chen L, Lei J, Yuan Z, Hu H, Lu Y, Wang X, Wang T, Yu R, Zhang W, Zhang J, Yu C, Ma L. Metabolite Neu5Ac triggers SLC3A2 degradation promoting vascular endothelial ferroptosis and aggravates atherosclerosis progression in ApoE -/-mice. Theranostics 2023; 13:4993-5016. [PMID: 37771765 PMCID: PMC10526676 DOI: 10.7150/thno.87968] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Atherosclerosis (AS) is still the major cause of cardiovascular disease (CVD) as well as stroke. Endothelial metabolic disorder has been found to be activated and then promote endothelial cells (ECs) injury, which is regarded to initiate AS progression. N-acetylneuraminic acid (Neu5Ac), a metabolite produced by hexosamine-sialic acid pathway branching from glucose metabolism, was presented as a notable biomarker of CVD and is positively correlated with ECs function. However, few studies explain whether Neu5Ac regulate AS progression by affecting EC function as well as its involved mechanisms are still unknown. Methods: Here, we mimicked an animal model in ApoE-/- mice which displaying similar plasma Neu5Ac levels with AS model to investigate its effect on AS progression. Results: We found that Neu5Ac exacerbated plaques area and increased lipids in plasma in absence of HFD feeding, and ECs inflammatory injury was supposed as the triggering factor upon Neu5Ac treatment with increasing expression of IL-1β, ICAM-1, and promoting ability of monocyte adhesion to ECs. Mechanistic studies showed that Neu5Ac facilitated SLC3A2 binding to ubiquitin and then triggered P62 mediated degradation, further leading to accumulation of lipid peroxidation in ECs. Fer-1 could inhibit ECs injury and reverse AS progression induced by Neu5Ac in ApoE-/- mice. Interestingly, mitochondrial dysfunction was also partly participated in ECs injury after Neu5Ac treatment and been reversed by Fer-1. Conclusions: Together, our study unveils a new mechanism by which evaluated metabolite Neu5Ac could promote SLC3A2 associated endothelial ferroptosis to activate ECs injury and AS plaque progression, thus providing a new insight into the role of Neu5Ac-ferroptosis pathway in AS. Also, our research revealed that pharmacological inhibition of ferroptosis may provide a novel therapeutic strategy for premature AS.
Collapse
Affiliation(s)
- Peng Xiang
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Qingqiu Chen
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Le Chen
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Jin Lei
- Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, 710002, Shaanxi, China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Hui Hu
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
| | - Yining Lu
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Xianmin Wang
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Ruihong Yu
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Wanping Zhang
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Jun Zhang
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, 400010, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, 400010, Chongqing, China
| |
Collapse
|
4
|
Jung SM, Le J, Doxsey WG, Haley JA, Park G, Guertin DA, Jang C. Stable Isotope Tracing and Metabolomics to Study In Vivo Brown Adipose Tissue Metabolic Fluxes. Methods Mol Biol 2022; 2448:119-130. [PMID: 35167094 PMCID: PMC9924221 DOI: 10.1007/978-1-0716-2087-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Brown adipose tissue (BAT) demonstrates extraordinary metabolic capacity. Previous research using conventional radio tracers reveals that BAT can act as a sink for a diverse menu of nutrients; still, the question of how BAT utilizes these nutrients remains unclear. Recent advances in mass spectrometry (MS) coupled to stable isotope tracing methods have greatly improved our understanding of metabolism in biology. Here, we have developed a BAT-tailored metabolomics and stable isotope tracing protocol using, as an example, the universally labeled 13C-glucose, a key nutrient heavily utilized by BAT. This method enables metabolic roadmaps to be drawn and pathway fluxes to be inferred for each nutrient tracer within BAT and its application could uncover new metabolic pathways not previously appreciated for BAT physiology.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Johnny Le
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Will G Doxsey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Grace Park
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Minami A, Ishii A, Shimba S, Kano T, Fujioka E, Sai S, Oshio N, Ishibashi S, Takahashi T, Kurebayashi Y, Kanazawa H, Yuki N, Otsubo T, Ikeda K, Suzuki T. Down-regulation of glutamate release from hippocampal neurons by sialidase. J Biochem 2018; 163:273-280. [PMID: 29319803 DOI: 10.1093/jb/mvy003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Sialidase, which removes sialic acid residues in sialylglycoconjugates, is essential for hippocampal memory and synaptic plasticity. Enzyme activity of sialidase is rapidly increased in response to neural excitation. Because sialic acid bound to gangliosides such as the tetra-sialoganglioside GQ1b is crucial for calcium signalling and neurotransmitter release, neural activity-dependent removal of sialic acid may affect hippocampal neurotransmission. In the present study, we found that 2-deoxy-2, 3-didehydro-D-N-acetylneuraminic acid (DANA), a sialidase inhibitor, increased expression of ganglioside GQ1b/GT1a in hippocampal acute slices. Extracellular glutamate level in the rat hippocampus measured by using in vivo microdialysis was increased by the sialidase inhibitor 2, 3-dehydro-2-deoxy-N-glycolylneuraminic acid as well as DANA. Synaptic vesicle exocytosis and intracellular Ca2+ increase evoked by high-K+ were also enhanced by DANA in primary cultured hippocampal neurons. Expression of GQ1b/GT1a was rapidly decreased by depolarization with high-K+, suggesting that the increase in sialidase activity by neural excitation is sufficient for cleavage of sialic acid. Our findings indicate that sialidase down-regulates glutamate release from hippocampal neurons via Ca2+ signalling modulation. Neural activity-dependent desialylation by sialidase may be a negative-feedback factor against presynaptic activity.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Ami Ishii
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Sumika Shimba
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Takahiro Kano
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Eri Fujioka
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Saki Sai
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Nagisa Oshio
- Department of Biochemistry, School of Pharmaceutical Sciences
| | | | | | | | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Nobuhiro Yuki
- Department of Neurology, Mishima Hospital, 1713-8 Fujikawa, Niigata 940-2302, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Hiroshima 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Hiroshima 737-0112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences
| |
Collapse
|
6
|
Minami A. [Multidimensional Analysis of Hippocampal Excitatory Neurotransmission and Development of Analytical Tools for Glycans]. YAKUGAKU ZASSHI 2016; 135:1341-8. [PMID: 26632149 DOI: 10.1248/yakushi.15-00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sialidase removes sialic acid residues from sialoglycoconjugates such as glycoproteins and glycolipids. Since sialic acid plays crucial roles in synaptic plasticity and memory in the hippocampus, the regulation of sialyl signaling by sialidase is also necessary for neural functions. However, since mammalian sialidase activity is remarkably weak, it has been difficult to detect sialidase activity in mammalian tissues. Determination of the distribution of sialidase activity in living mammalian tissues would provide much valuable information for understanding the roles of sialidase in physiological functions. Therefore, we synthesized a novel benzothiazolylphenol-based sialic acid derivative (BTP-Neu5Ac) as a fluorescent sialidase substrate. After cleavage of BTP-Neu5Ac, which is water soluble and shows little fluorescence, with sialidase, the water-insoluble fluorophore benzothiazolylphenol (BTP) released from BTP-Neu5Ac stains tissue and shows bright fluorescence. BTP-Neu5Ac can visualize sialidase activity in brain tissue with high levels of sensitivity and specificity. The sialidase expression level is markedly high in various human cancers such as colon, renal, prostate, and ovarian cancers. BTP-Neu5Ac can detect human colon cancers sensitively. Thus, BTP-Neu5Ac is useful not only for physiological research but also as a cancer probe. BTP-Neu5Ac is now being used in virology research. In this review, methods for histochemical imaging of sialidase activity and the role of sialidase in hippocampal memory are described based on the author's study of multidimensional analysis of hippocampal excitatory neurotransmission and development of analytical tools for glycans, which was awarded a prize by the Tokai branch of the Pharmaceutical Society of Japan.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|