1
|
Schmidt P, Lindemeyer J, Raut P, Schütz M, Saniternik S, Jönsson J, Endepols H, Fischer T, Quaas A, Schlößer HA, Thelen M, Grüll H. Multiparametric Characterization of the DSL-6A/C1 Pancreatic Cancer Model in Rats. Cancers (Basel) 2024; 16:1535. [PMID: 38672617 PMCID: PMC11049193 DOI: 10.3390/cancers16081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The DSL-6A/C1 murine pancreatic ductal adenocarcinoma (PDAC) tumor model was established in Lewis rats and characterized through a comprehensive multiparametric analysis to compare it to other preclinical tumor models and explore potential diagnostic and therapeutical targets. DSL-6A/C1 tumors were histologically analyzed to elucidate PDAC features. The tumor microenvironment was studied for immune cell prevalence. Multiparametric MRI and PET imaging were utilized to characterize tumors, and 68Ga-FAPI-46-targeting cancer-associated fibroblasts (CAFs), were used to validate the histological findings. The histology confirmed typical PDAC characteristics, such as malformed pancreatic ductal malignant cells and CAFs. Distinct immune landscapes were identified, revealing an increased presence of CD8+ T cells and a decreased CD4+ T cell fraction within the tumor microenvironment. PET imaging with 68Ga-FAPI tracers exhibited strong tracer uptake in tumor tissues. The MRI parameters indicated increasing intralesional necrosis over time and elevated contrast media uptake in vital tumor areas. We have demonstrated that the DSL-6A/C1 tumor model, particularly due to its high tumorigenicity, tumor size, and 68Ga-FAPI-46 sensitivity, is a suitable alternative to established small animal models for many forms of preclinical analyses and therapeutic studies of PDAC.
Collapse
Affiliation(s)
- Patrick Schmidt
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Johannes Lindemeyer
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Pranali Raut
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Markus Schütz
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Cologne, 50937 Cologne, Germany
| | - Sven Saniternik
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Cologne, 50937 Cologne, Germany
| | - Jannika Jönsson
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Heike Endepols
- Faculty of Medicine and University Hospital of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, 50937 Cologne, Germany;
- Faculty of Medicine and University Hospital of Cologne, Department of Nuclear Medicine, University of Cologne, 50937 Cologne, Germany;
- Nuclear Chemistry, Institute of Neuroscience and Medicine (INM-5), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Thomas Fischer
- Faculty of Medicine and University Hospital of Cologne, Department of Nuclear Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, 50937 Cologne, Germany;
| | - Hans Anton Schlößer
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (H.A.S.); (M.T.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (H.A.S.); (M.T.)
| | - Holger Grüll
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
2
|
Gerwing M, Hoffmann E, Geyer C, Helfen A, Maus B, Schinner R, Wachsmuth L, Heindel W, Eisenblaetter M, Faber C, Wildgruber M. Intratumoral heterogeneity after targeted therapy in murine cancer models with differing degrees of malignancy. Transl Oncol 2023; 37:101773. [PMID: 37666208 PMCID: PMC10483060 DOI: 10.1016/j.tranon.2023.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
INTRODUCTION Conventional morphologic and volumetric assessment of treatment response is not suitable for adequately assessing responses to targeted cancer therapy. The aim of this study was to evaluate changes in tumor composition after targeted therapy in murine models of breast cancer with differing degrees of malignancy via non-invasive magnetic resonance imaging (MRI). MATERIALS AND METHODS Mice bearing highly malignant 4T1 tumors or low malignant 67NR tumors were treated with either a combination of two immune checkpoint inhibitors (ICI, anti-PD1 and anti-CTLA-4) or the multi-tyrosine kinase inhibitor sorafenib, following experiments with macrophage-depleting clodronate-loaded liposomes and vessel-stabilizing angiopoietin-1. Mice were imaged on a 9.4 T small animal MRI system with a multiparametric (mp) protocol, comprising T1 and T2 mapping and diffusion-weighted imaging. Tumors were analyzed ex vivo with histology. RESULTS AND DISCUSSIONS All treatments led to an increase in non-viable areas, but therapy-induced intratumoral changes differed between the two tumor models and the different targeted treatments. While ICI treatment led to intratumoral hemorrhage, sorafenib treatment mainly induced intratumoral necrosis. Treated 4T1 tumors showed increasing and extensive areas of necrosis, in comparison to 67NR tumors with only small, but also increasing, necrotic areas. After either of the applied treatments, intratumoral heterogeneity, was increased in both tumor models, and confirmed ex vivo by histology. Apparent diffusion coefficient with subsequent histogram analysis proved to be the most sensitive MRI sequence. In conclusion, mp MRI enables to assess dedicated therapy-related intratumoral changes and may serve as a biomarker for treatment response assessment.
Collapse
Affiliation(s)
- M Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany.
| | - E Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - C Geyer
- Clinic of Radiology, University of Münster, Münster, Germany
| | - A Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
| | - B Maus
- Clinic of Radiology, University of Münster, Münster, Germany
| | - R Schinner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - L Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - W Heindel
- Clinic of Radiology, University of Münster, Münster, Germany
| | - M Eisenblaetter
- Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, University of Bielefeld, Bielefeld, Germany
| | - C Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - M Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Hoffmann E, Gerwing M, Krähling T, Hansen U, Kronenberg K, Masthoff M, Geyer C, Höltke C, Wachsmuth L, Schinner R, Hoerr V, Heindel W, Karst U, Eisenblätter M, Maus B, Helfen A, Faber C, Wildgruber M. Vascular response patterns to targeted therapies in murine breast cancer models with divergent degrees of malignancy. Breast Cancer Res 2023; 25:56. [PMID: 37221619 DOI: 10.1186/s13058-023-01658-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Response assessment of targeted cancer therapies is becoming increasingly challenging, as it is not adequately assessable with conventional morphological and volumetric analyses of tumor lesions. The tumor microenvironment is particularly constituted by tumor vasculature which is altered by various targeted therapies. The aim of this study was to noninvasively assess changes in tumor perfusion and vessel permeability after targeted therapy in murine models of breast cancer with divergent degrees of malignancy. METHODS Low malignant 67NR or highly malignant 4T1 tumor-bearing mice were treated with either the multi-kinase inhibitor sorafenib or immune checkpoint inhibitors (ICI, combination of anti-PD1 and anti-CTLA4). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with i.v. injection of albumin-binding gadofosveset was conducted on a 9.4 T small animal MRI. Ex vivo validation of MRI results was achieved by transmission electron microscopy, immunohistochemistry and laser ablation-inductively coupled plasma-mass spectrometry. RESULTS Therapy-induced changes in tumor vasculature differed between low and highly malignant tumors. Sorafenib treatment led to decreased tumor perfusion and endothelial permeability in low malignant 67NR tumors. In contrast, highly malignant 4T1 tumors demonstrated characteristics of a transient window of vascular normalization with an increase in tumor perfusion and permeability early after therapy initiation, followed by decreased perfusion and permeability parameters. In the low malignant 67NR model, ICI treatment also mediated vessel-stabilizing effects with decreased tumor perfusion and permeability, while ICI-treated 4T1 tumors exhibited increasing tumor perfusion with excessive vascular leakage. CONCLUSION DCE-MRI enables noninvasive assessment of early changes in tumor vasculature after targeted therapies, revealing different response patterns between tumors with divergent degrees of malignancy. DCE-derived tumor perfusion and permeability parameters may serve as vascular biomarkers that allow for repetitive examination of response to antiangiogenic treatment or immunotherapy.
Collapse
Grants
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany.
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Tobias Krähling
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Katharina Kronenberg
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | - Carsten Höltke
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Verena Hoerr
- Clinic of Radiology, University of Münster, Münster, Germany
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Walter Heindel
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Michel Eisenblätter
- Clinic of Radiology, University of Münster, Münster, Germany
- Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, University of Bielefeld, Bielefeld, Germany
| | - Bastian Maus
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Anne Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Gerwing M, Hoffmann E, Kronenberg K, Hansen U, Masthoff M, Helfen A, Geyer C, Wachsmuth L, Höltke C, Maus B, Hoerr V, Krähling T, Hiddeßen L, Heindel W, Karst U, Kimm MA, Schinner R, Eisenblätter M, Faber C, Wildgruber M. Multiparametric MRI enables for differentiation of different degrees of malignancy in two murine models of breast cancer. Front Oncol 2022; 12:1000036. [PMID: 36408159 PMCID: PMC9667047 DOI: 10.3389/fonc.2022.1000036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Objective The objective of this study was to non-invasively differentiate the degree of malignancy in two murine breast cancer models based on identification of distinct tissue characteristics in a metastatic and non-metastatic tumor model using a multiparametric Magnetic Resonance Imaging (MRI) approach. Methods The highly metastatic 4T1 breast cancer model was compared to the non-metastatic 67NR model. Imaging was conducted on a 9.4 T small animal MRI. The protocol was used to characterize tumors regarding their structural composition, including heterogeneity, intratumoral edema and hemorrhage, as well as endothelial permeability using apparent diffusion coefficient (ADC), T1/T2 mapping and dynamic contrast-enhanced (DCE) imaging. Mice were assessed on either day three, six or nine, with an i.v. injection of the albumin-binding contrast agent gadofosveset. Ex vivo validation of the results was performed with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), histology, immunhistochemistry and electron microscopy. Results Significant differences in tumor composition were observed over time and between 4T1 and 67NR tumors. 4T1 tumors showed distorted blood vessels with a thin endothelial layer, resulting in a slower increase in signal intensity after injection of the contrast agent. Higher permeability was further reflected in higher Ktrans values, with consecutive retention of gadolinium in the tumor interstitium visible in MRI. 67NR tumors exhibited blood vessels with a thicker and more intact endothelial layer, resulting in higher peak enhancement, as well as higher maximum slope and area under the curve, but also a visible wash-out of the contrast agent and thus lower Ktrans values. A decreasing accumulation of gadolinium during tumor progression was also visible in both models in LA-ICP-MS. Tissue composition of 4T1 tumors was more heterogeneous, with intratumoral hemorrhage and necrosis and corresponding higher T1 and T2 relaxation times, while 67NR tumors mainly consisted of densely packed tumor cells. Histogram analysis of ADC showed higher values of mean ADC, histogram kurtosis, range and the 90th percentile (p90), as markers for the heterogenous structural composition of 4T1 tumors. Principal component analysis (PCA) discriminated well between the two tumor models. Conclusions Multiparametric MRI as presented in this study enables for the estimation of malignant potential in the two studied tumor models via the assessment of certain tumor features over time.
Collapse
Affiliation(s)
- Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- *Correspondence: Mirjam Gerwing,
| | - Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Katharina Kronenberg
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Anne Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Christiane Geyer
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Carsten Höltke
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Bastian Maus
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Verena Hoerr
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Heart Center Bonn, Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Tobias Krähling
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Lena Hiddeßen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Walter Heindel
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Melanie A. Kimm
- Department of Radiology, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Michel Eisenblätter
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Department of Diagnostic and Interventional Radiology, University of Freiburg, Freiburg, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Department of Radiology, University Hospital, Ludwig-Maximilian University, Munich, Germany
| |
Collapse
|
5
|
Ding H, Velasco C, Ye H, Lindner T, Grech-Sollars M, O’Callaghan J, Hiley C, Chouhan MD, Niendorf T, Koh DM, Prieto C, Adeleke S. Current Applications and Future Development of Magnetic Resonance Fingerprinting in Diagnosis, Characterization, and Response Monitoring in Cancer. Cancers (Basel) 2021; 13:4742. [PMID: 34638229 PMCID: PMC8507535 DOI: 10.3390/cancers13194742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) has enabled non-invasive cancer diagnosis, monitoring, and management in common clinical settings. However, inadequate quantitative analyses in MRI continue to limit its full potential and these often have an impact on clinicians' judgments. Magnetic resonance fingerprinting (MRF) has recently been introduced to acquire multiple quantitative parameters simultaneously in a reasonable timeframe. Initial retrospective studies have demonstrated the feasibility of using MRF for various cancer characterizations. Further trials with larger cohorts are still needed to explore the repeatability and reproducibility of the data acquired by MRF. At the moment, technical difficulties such as undesirable processing time or lack of motion robustness are limiting further implementations of MRF in clinical oncology. This review summarises the latest findings and technology developments for the use of MRF in cancer management and suggests possible future implications of MRF in characterizing tumour heterogeneity and response assessment.
Collapse
Affiliation(s)
- Hao Ding
- Imperial College School of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Huihui Ye
- State Key Laboratory of Modern Optical instrumentation, Zhejiang University, Hangzhou 310027, China;
| | - Thomas Lindner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| | - Matthew Grech-Sollars
- Department of Medical Physics, Royal Surrey NHS Foundation Trust, Surrey GU2 7XX, UK;
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - James O’Callaghan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Crispin Hiley
- Cancer Research UK, Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6DD, UK;
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Manil D. Chouhan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck, Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SM2 5NG, UK;
- Department of Radiology, Royal Marsden Hospital, London SW3 6JJ, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Sola Adeleke
- High Dimensional Neurology Group, Queen’s Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Oncology, Guy’s & St Thomas’ Hospital, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
6
|
Maurer GD, Tichy J, Harter PN, Nöth U, Weise L, Quick-Weller J, Deichmann R, Steinbach JP, Bähr O, Hattingen E. Matching Quantitative MRI Parameters with Histological Features of Treatment-Naïve IDH Wild-Type Glioma. Cancers (Basel) 2021; 13:cancers13164060. [PMID: 34439213 PMCID: PMC8392045 DOI: 10.3390/cancers13164060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Quantitative MRI allows to probe tissue properties by measuring relaxation times and may thus detect subtle changes in tissue composition. In this work we analyzed different relaxation times (T1, T2, T2* and T2') and histological features in 321 samples that were acquired from 25 patients with newly diagnosed IDH wild-type glioma. Quantitative relaxation times before intravenous application of gadolinium-based contrast agent (GBCA), T1 relaxation time after GBCA as well as the relative difference between T1 relaxation times pre-to-post GBCA (T1rel) were compared with histopathologic features such as the presence of tumor cells, cell and vessel density, endogenous markers for hypoxia and cell proliferation. Image-guided stereotactic biopsy allowed for the attribution of each tissue specimen to its corresponding position in the respective relaxation time map. Compared to normal tissue, T1 and T2 relaxation times and T1rel were prolonged in samples containing tumor cells. The presence of vascular proliferates was associated with higher T1rel values. Immunopositivity for lactate dehydrogenase A (LDHA) involved slightly longer T1 relaxation times. However, low T2' values, suggesting high amounts of deoxyhemoglobin, were found in samples with elevated vessel densities, but not in samples with increased immunopositivity for LDHA. Taken together, some of our observations were consistent with previous findings but the correlation of quantitative MRI and histologic parameters did not confirm all our pathophysiology-based assumptions.
Collapse
Affiliation(s)
- Gabriele D. Maurer
- Senckenberg Institute of Neurooncology, Goethe University Hospital, 60528 Frankfurt am Main, Germany; (J.T.); (J.P.S.); (O.B.)
- Correspondence:
| | - Julia Tichy
- Senckenberg Institute of Neurooncology, Goethe University Hospital, 60528 Frankfurt am Main, Germany; (J.T.); (J.P.S.); (O.B.)
| | - Patrick N. Harter
- Institute of Neurology (Edinger Institute), Goethe University Hospital, 60528 Frankfurt am Main, Germany;
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, 60528 Frankfurt am Main, Germany; (U.N.); (R.D.)
| | - Lutz Weise
- Division of Neurosurgery, Dalhousie University Halifax, Halifax, NS B3H 4R2, Canada;
| | - Johanna Quick-Weller
- Department of Neurosurgery, Goethe University Hospital, 60528 Frankfurt am Main, Germany;
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, 60528 Frankfurt am Main, Germany; (U.N.); (R.D.)
| | - Joachim P. Steinbach
- Senckenberg Institute of Neurooncology, Goethe University Hospital, 60528 Frankfurt am Main, Germany; (J.T.); (J.P.S.); (O.B.)
| | - Oliver Bähr
- Senckenberg Institute of Neurooncology, Goethe University Hospital, 60528 Frankfurt am Main, Germany; (J.T.); (J.P.S.); (O.B.)
- Department of Neurology, Klinikum Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital, 60528 Frankfurt am Main, Germany;
| |
Collapse
|
7
|
Faller TL, Trotier AJ, Rousseau AF, Franconi JM, Miraux S, Ribot EJ. 2D multislice MP2RAGE sequence for fast T 1 mapping at 7 T: Application to mouse imaging and MR thermometry. Magn Reson Med 2020; 84:1430-1440. [PMID: 32083341 DOI: 10.1002/mrm.28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/24/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a 2D radial multislice MP2RAGE sequence for fast and reliable T1 mapping at 7 T in mice and for MR thermometry. METHODS The 2D-MP2RAGE sequence was performed with the following parameters: TI1 -TI2 -MP2RAGETR = 1000-3000-9000 ms. The multiple dead times within the sequence were used for interleaved multislice acquisition, enabling one to acquire six slices in 9 seconds. The excitation pulse shape, inversion selectivity, and interslice gap were optimized. In vitro comparison with the inversion-recovery sequence was performed. The T1 variations with temperature were measured on tubes with T1 ranging from 800 ms to 2000 ms. The sequence was used to acquire T1 maps continuously during 30 minutes on the brain and abdomen of healthy mice. RESULTS A three-lobe cardinal sine excitation pulse, combined with an inversion slice thickness and an interslice gap of respectively 150% and 50% of the imaging slice thickness, led to a SD and bias of the T1 measurements below 1% and 2%, respectively. A linear dependence of T1 with temperature was measured between 10°C and 60°C. In vivo, less than 1% variation was measured between successive T1 maps in the mouse brain. In the abdomen, no obvious in-plane motion artifacts were observed but respiratory motion in the slice dimension led to 6% T1 underestimation. CONCLUSION The multislice MP2RAGE sequence could be used for fast whole-body T1 mapping and MR thermometry. Its reconstruction method would enable on-the-fly reconstruction.
Collapse
Affiliation(s)
- Thibaut L Faller
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Alice F Rousseau
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Radial MP2RAGE sequence for rapid 3D T 1 mapping of mouse abdomen: application to hepatic metastases. Eur Radiol 2019; 29:5844-5851. [PMID: 30888483 DOI: 10.1007/s00330-019-06081-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The T1 longitudinal recovery time is regarded as a biomarker of cancer treatment efficiency. In this scope, the Magnetization Prepared 2 RApid Gradient Echo (MP2RAGE) sequence relevantly complies with fast 3D T1 mapping. Nevertheless, with its Cartesian encoding scheme, it is very sensitive to respiratory motion. Consequently, a radial encoding scheme was implemented for the detection and T1 measurement of hepatic metastases in mice at 7T. METHODS A 3D radial encoding scheme was developed using a golden angle distribution for the k-space trajectories. As in that case, each projection contributes to the image contrast, the signal equations had to be modified. Phantoms containing increasing gadoteridol concentrations were used to determine the accuracy of the sequence in vitro. Healthy mice were repetitively scanned to assess the reproducibility of the T1 values. The growth of hepatic metastases was monitored. Undersampling robustness was also evaluated. RESULTS The accuracy of the T1 values obtained with the radial MP2RAGE sequence was > 90% compared to the Inversion-Recovery sequence. The motion robustness of this new sequence also enabled repeatable T1 measurements on abdominal organs. Hepatic metastases of less than 1-mm diameter were easily detected and T1 heterogeneities within the metastasis and between the metastases within the same animal were measured. With a twofold acceleration factor using undersampling, high-quality 3D T1 abdominal maps were achieved in 9 min. CONCLUSIONS The radial MP2RAGE sequence could be used for fast 3D T1 mapping, to detect and characterize metastases in regions subjected to respiratory motion. KEY POINTS • The Cartesian encoding of the MP2RAGE sequence was modified to a radial encoding. The modified sequence enabled accurate T 1 measurements on phantoms and on abdominal organs of mice. • Hepatic metastases were easily detected due to high contrast. Heterogeneity in T 1 was measured within the metastases and between each metastasis within the same animal. • As implementation of this sequence does not require specific hardware, we expect that it could be readily available for clinical practice in humans.
Collapse
|
9
|
Montelius M, Jalnefjord O, Spetz J, Nilsson O, Forssell‐Aronsson E, Ljungberg M. Multiparametric MR for non-invasive evaluation of tumour tissue histological characteristics after radionuclide therapy. NMR IN BIOMEDICINE 2019; 32:e4060. [PMID: 30693592 PMCID: PMC6590232 DOI: 10.1002/nbm.4060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 05/05/2023]
Abstract
Early non-invasive tumour therapy response assessment requires methods sensitive to biological and physiological tumour characteristics. The aim of this study was to find and evaluate magnetic resonance imaging (MRI) derived tumour tissue parameters that correlate with histological parameters and that reflect effects of radionuclide therapy. Mice bearing a subcutaneous human small-intestine neuroendocrine tumour were i.v. injected with 177 Lu-octreotate. MRI was performed (7 T Bruker Biospec) on different post-therapy intervals (1 and 13 days) using T2-weighted imaging, mapping of T2* and T1 relaxation time constants, as well as diffusion and dynamic contrast enhancement (DCE-MRI) techniques. After MRI, animals were killed and tumours excised. Four differently stained histological sections of the most central imaged tumour plane were digitized, and segmentation techniques were used to produce maps reflecting fibrotic and vascular density, apoptosis, and proliferation. Histological maps were aligned with MRI-derived parametric maps using landmark-based registration. Correlations and predictive power were evaluated using linear mixed-effects models and cross-validation, respectively. Several MR parameters showed statistically significant correlations with histological parameters. In particular, three DCE-MRI-derived parameters reflecting capillary function additionally showed high predictive power regarding apoptosis (2/3) and proliferation (1/3). T1 could be used to predict vascular density, and perfusion fraction derived from diffusion MRI could predict fibrotic density, although with lower predictive power. This work demonstrates the potential to use multiparametric MRI to retrieve important information on the tumour microenvironment after radiotherapy. The non-invasiveness of the method also allows longitudinal tumour tissue characterization. Further investigation is warranted to evaluate the parameters highlighted in this study longitudinally, in larger studies, and with additional histological methods.
Collapse
Affiliation(s)
- Mikael Montelius
- Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Department of Radiation PhysicsUniversity of GothenburgGothenburgSweden
| | - Oscar Jalnefjord
- Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Department of Radiation PhysicsUniversity of GothenburgGothenburgSweden
- Department of Medical Physics and Biomedical EngineeringSahlgrenska University HospitalGothenburgSweden
| | - Johan Spetz
- Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Department of Radiation PhysicsUniversity of GothenburgGothenburgSweden
| | - Ola Nilsson
- Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy, Department of PathologyUniversity of GothenburgGothenburgSweden
| | - Eva Forssell‐Aronsson
- Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Department of Radiation PhysicsUniversity of GothenburgGothenburgSweden
| | - Maria Ljungberg
- Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Department of Radiation PhysicsUniversity of GothenburgGothenburgSweden
- Department of Medical Physics and Biomedical EngineeringSahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
10
|
Trotier AJ, Rapacchi S, Faller TL, Miraux S, Ribot EJ. Compressed-Sensing MP2RAGE sequence: Application to the detection of brain metastases in mice at 7T. Magn Reson Med 2018; 81:551-559. [PMID: 30198115 DOI: 10.1002/mrm.27438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE To develop a Compressed Sensing (CS)-MP2RAGE sequence to drastically shorten acquisition duration and then detect and measure the T1 of brain metastases in mice at 7 T. METHODS The encoding trajectory of the standard Cartesian MP2RAGE sequence has been modified (1) to obtain a variable density Poisson disk under-sampling distribution along the ky -kz plane, and (2) to sample the central part of the k-space exactly at TI1 and TI2 inversion times. In a prospective study, the accuracy of the T1 measurements was evaluated on phantoms containing increasing concentrations of gadolinium. The CS acceleration factors were increased to evaluate their influence on the contrast and T1 measurements of brain metastases in vivo. Finally, the 3D T1 maps were acquired with at 4-fold increased spatial resolution. The volumes and T1 values of the metastases were measured while using CS to reduce scan time. RESULTS The implementation of the CS-encoding trajectory did not affect the T1 measurements in vitro. Accelerating the acquisition by a factor of 2 did not alter the contrast or the T1 values of the brain metastases. 3D T1 maps could be obtained in < 1 min using a CS factor of 6. Increasing the spatial resolution enabled more accurately measurement of the metastasis volumes while maintaining an acquisition duration below 5 min. CONCLUSION The CS-MP2RAGE sequence could be of great interest in oncology to either rapidly obtain mouse brain 3D T1 maps or to increase the spatial resolution with no penalty on the scan duration.
Collapse
Affiliation(s)
- Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| | | | - Thibaut L Faller
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| |
Collapse
|