1
|
Layer-by-layer biofabrication of coronary covered stents with clickable elastin-like recombinamers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Fernández-Colino A, Wolf F, Rütten S, Schmitz-Rode T, Rodríguez-Cabello JC, Jockenhoevel S, Mela P. Small Caliber Compliant Vascular Grafts Based on Elastin-Like Recombinamers for in situ Tissue Engineering. Front Bioeng Biotechnol 2019; 7:340. [PMID: 31803735 PMCID: PMC6877483 DOI: 10.3389/fbioe.2019.00340] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023] Open
Abstract
Vascular disease is a leading cause of death worldwide, but surgical options are restricted by the limited availability of autologous vessels, and the suboptimal performance of prosthetic vascular grafts. This is especially evident for coronary artery by-pass grafts, whose small caliber is associated with a high occlusion propensity. Despite the potential of tissue-engineered grafts, compliance mismatch, dilatation, thrombus formation, and the lack of functional elastin are still major limitations leading to graft failure. This calls for advanced materials and fabrication schemes to achieve improved control on the grafts' properties and performance. Here, bioinspired materials and technical textile components are combined to create biohybrid cell-free implants for endogenous tissue regeneration. Clickable elastin-like recombinamers are processed to form an open macroporous 3D architecture to favor cell ingrowth, while being endowed with the non-thrombogenicity and the elastic behavior of the native elastin. The textile components (i.e., warp-knitted and electrospun meshes) are designed to confer suture retention, long-term structural stability, burst strength, and compliance. Notably, by controlling the electrospun layer's thickness, the compliance can be modulated over a wide range of values encompassing those of native vessels. The grafts support cell ingrowth, extracellular matrix deposition and endothelium development in vitro. Overall, the fabrication strategy results in promising off-the-shelf hemocompatible vascular implants for in situ tissue engineering by addressing the known limitations of bioartificial vessel substitutes.
Collapse
Affiliation(s)
- Alicia Fernández-Colino
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Frederic Wolf
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Aachen, Germany
| | - Thomas Schmitz-Rode
- AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | | | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,AMIBM-Aachen-Maastricht-Institute for Biobased Materials, Maastricht University, Geleen, Netherlands
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
Bax DV, Yin Y, Kondyurin A, Diwan AD, Bhargav D, Weiss AS, Bilek MMM, McKenzie DR. Plasma processing of PDMS based spinal implants for covalent protein immobilization, cell attachment and spreading. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:178. [PMID: 30506173 DOI: 10.1007/s10856-018-6181-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
PDMS is widely used for prosthetic device manufacture. Conventional ion implantation is not a suitable treatment to enhance the biocompatibility of poly dimethyl siloxane (PDMS) due to its propensity to generate a brittle silicon oxide surface layer which cracks and delaminates. To overcome this limitation, we have developed new plasma based processes to balance the etching of carbon with implantation of carbon from the plasma source. When this carbon was implanted from the plasma phase it resulted in a surface that was structurally similar and intermixed with the underlying PDMS material and not susceptible to delamination. The enrichment in surface carbon allowed the formation of carbon based radicals that are not present in conventional plasma ion immersion implantation (PIII) treated PDMS. This imparts the PDMS surfaces with covalent protein binding capacity that is not observed on PIII treated PDMS. The change in surface energy preserved the function of bound biomolecules and enhanced the attachment of MG63 osteosarcoma cells compared to the native surface. The attached cells, an osteoblast interaction model, showed increased spreading on the treated over untreated surfaces. The carbon-dependency for these beneficial covalent protein and cell linkage properties was tested by incorporating carbon from a different source. To this end, a second surface was produced where carbon etching was balanced against implantation from a thin carbon-based polymer coating. This had similar protein and cell-binding properties to the surfaces generated with carbon inclusion in the plasma phase, thus highlighting the importance of balancing carbon etching and deposition. Additionally, the two effects of protein linkage and bioactivity could be combined where the cell response was further enhanced by covalently tethering a biomolecule coating, as exemplified here with the cell adhesive protein tropoelastin. Providing a balanced carbon source in the plasma phase is applicable to prosthetic device fabrication as illustrated using a 3-dimensional PDMS balloon prosthesis for spinal implant applications. Consequently, this study lays the groundwork for effective treatments of PDMS to selectively recruit cells to implantable PDMS fabricated biodevices.
Collapse
Affiliation(s)
- Daniel V Bax
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Yongbai Yin
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexey Kondyurin
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ashish D Diwan
- Spine Service, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, 2217, Australia
| | - Divya Bhargav
- Spine Service, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, 2217, Australia
| | - Anthony S Weiss
- Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- Bosch Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela M M Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - David R McKenzie
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Mithieux SM, Aghaei-Ghareh-Bolagh B, Yan L, Kuppan KV, Wang Y, Garces-Suarez F, Li Z, Maitz PK, Carter EA, Limantoro C, Chrzanowski W, Cookson D, Riboldi-Tunnicliffe A, Baldock C, Ohgo K, Kumashiro KK, Edwards G, Weiss AS. Tropoelastin Implants That Accelerate Wound Repair. Adv Healthc Mater 2018; 7:e1701206. [PMID: 29450975 DOI: 10.1002/adhm.201701206] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/14/2018] [Indexed: 11/12/2022]
Abstract
A novel, pure, synthetic material is presented that promotes the repair of full-thickness skin wounds. The active component is tropoelastin and leverages its ability to promote new blood vessel formation and its cell recruiting properties to accelerate wound repair. Key to the technology is the use of a novel heat-based, stabilized form of human tropoelastin which allows for tunable resorption. This implantable material contributes a tailored insert that can be shaped to the wound bed, where it hydrates to form a conformable protein hydrogel. Significant benefits in the extent of wound healing, dermal repair, and regeneration of mature epithelium in healthy pigs are demonstrated. The implant is compatible with initial co-treatment with full- and split-thickness skin grafts. The implant's superiority to sterile bandaging, commercial hydrogel and dermal regeneration template products is shown. On this basis, a new concept for a prefabricated tissue repair material for point-of-care treatment of open wounds is provided.
Collapse
Affiliation(s)
- Suzanne M. Mithieux
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
| | - Leping Yan
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
| | - Kekini V. Kuppan
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
- Heart Research Institute; University of Sydney; NSW 2006 Australia
| | - Yiwei Wang
- Burns Research Group; ANZAC Research Institute; University of Sydney; Concord NSW 2139 Australia
| | - Francia Garces-Suarez
- Burns Research Group; ANZAC Research Institute; University of Sydney; Concord NSW 2139 Australia
| | - Zhe Li
- Burns Research Group; ANZAC Research Institute; University of Sydney; Concord NSW 2139 Australia
| | - Peter K. Maitz
- Burns Research Group; ANZAC Research Institute; University of Sydney; Concord NSW 2139 Australia
| | - Elizabeth A. Carter
- Vibrational Spectroscopy Core Facility and Faculty of Chemistry; University of Sydney; NSW 2006 Australia
| | - Christina Limantoro
- Faculty of Pharmacy; University of Sydney; NSW 2006 Australia
- Australian Institute for Nanoscale Science and Technology; University of Sydney; NSW 2006 Australia
| | - Wojciech Chrzanowski
- Faculty of Pharmacy; University of Sydney; NSW 2006 Australia
- Australian Institute for Nanoscale Science and Technology; University of Sydney; NSW 2006 Australia
| | | | | | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research; Division of Cell Matrix Biology and Regenerative Medicine; School of Biological Sciences; Manchester Academic Health Centre; University of Manchester; Manchester M13 9PT UK
| | - Kosuke Ohgo
- Department of Chemistry; University of Hawaii; Honolulu HI 96822 USA
| | | | - Glenn Edwards
- School of Animal and Veterinary Sciences; Charles Sturt University; NSW 2678 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
- Bosch Institute; University of Sydney; NSW 2006 Australia
| |
Collapse
|
5
|
Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation. Biosci Rep 2017; 37:BSR20170002. [PMID: 28536311 PMCID: PMC5479018 DOI: 10.1042/bsr20170002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF165) displayed a high capability to alter their phenotype and function into ELCs in vitro. Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro. We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation.
Collapse
|
6
|
Yeo GC, Kondyurin A, Kosobrodova E, Weiss AS, Bilek MMM. A sterilizable, biocompatible, tropoelastin surface coating immobilized by energetic ion activation. J R Soc Interface 2017; 14:20160837. [PMID: 28179545 PMCID: PMC5332567 DOI: 10.1098/rsif.2016.0837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 02/05/2023] Open
Abstract
Biomimetic materials which integrate with surrounding tissues and regulate new tissue formation are attractive for tissue engineering and regenerative medicine. Plasma immersion ion-implanted (PIII) polyethersulfone (PES) provides an excellent platform for the irreversible immobilization of bioactive proteins and peptides. PIII treatment significantly improves PES wettability and results in the formation of acidic groups on the PES surface, with the highest concentration observed at 40-80 s of PIII treatment. The elastomeric protein tropoelastin can be stably adhered to PIII-treated PES in a cell-interactive conformation by tailoring the pH and salt levels of the protein-surface association conditions. Tropoelastin-coated PIII-treated PES surfaces are resistant to molecular fouling, and actively promote high levels of fibroblast adhesion and proliferation while maintaining cell morphology. Tropoelastin, unlike other extracellular matrix proteins such as fibronectin, uniquely retains full bioactivity even after medical-grade ethylene oxide sterilization. This dual approach of PIII treatment and tropoelastin cloaking allows for the stable, robust functionalization of clinically used polymer materials for directed cellular interactions.
Collapse
Affiliation(s)
- Giselle C Yeo
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexey Kondyurin
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elena Kosobrodova
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
- Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M M Bilek
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
7
|
Miranda-Nieves D, Chaikof EL. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomater Sci Eng 2016; 3:694-711. [PMID: 33440491 DOI: 10.1021/acsbiomaterials.6b00250] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collagen and elastin represent the two most predominant proteins in the body and are responsible for modulating important biological and mechanical properties. Thus, the focus of this review is the use of collagen and elastin as biomaterials for the fabrication of living tissues. Considering the importance of both biomaterials, we first propose the notion that many tissues in the human body represent a reinforced composite of collagen and elastin. In the rest of the review, collagen and elastin biosynthesis and biophysics, as well as molecular sources and biomaterial fabrication methodologies, including casting, fiber spinning, and bioprinting, are discussed. Finally, we summarize the current attempts to fabricate a subset of living tissues and, based on biochemical and biomechanical considerations, suggest that future tissue-engineering efforts consider direct incorporation of collagen and elastin biomaterials.
Collapse
Affiliation(s)
- David Miranda-Nieves
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
Hiob MA, Trane AE, Wise SG, Bernatchez PN, Weiss AS. Tropoelastin enhances nitric oxide production by endothelial cells. Nanomedicine (Lond) 2016; 11:1591-7. [PMID: 27175893 DOI: 10.2217/nnm-2016-0052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS This study aimed to characterize the role of tropoelastin in eliciting a nitric oxide response in endothelial cells. MATERIALS AND METHODS Nitric oxide production in cells was quantified following the addition of known nitric oxide synthase pathway inhibitors such as LNAME and 1400W. The effect of eNOS siRNA knockdowns was studied using western blotting and assessed in the presence of PI3K-inhibitor, wortmannin. RESULTS Tropoelastin-induced nitric oxide production was LNAME and wortmannin sensitive, while being unaffected by treatment with 1400W. CONCLUSION Tropoelastin acts through a PI3K-specific pathway that leads to the phosphorylation of eNOS to enhance nitric oxide production in endothelial cells. This result points to the benefit of the use of tropoelastin in vascular applications, where NO production is a characteristic marker of vascular health.
Collapse
Affiliation(s)
- Matti A Hiob
- School of Life & Environmental Biosciences, University of Sydney, Sydney, NSW 2006, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Andy E Trane
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z1Y6, Canada.,Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, Canada
| | - Steven G Wise
- School of Life & Environmental Biosciences, University of Sydney, Sydney, NSW 2006, Australia.,Sydney Medical School, University of Sydney, NSW 2006, Australia.,The Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Pascal N Bernatchez
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z1Y6, Canada.,Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, Canada
| | - Anthony S Weiss
- School of Life & Environmental Biosciences, University of Sydney, Sydney, NSW 2006, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.,Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Elastomers in vascular tissue engineering. Curr Opin Biotechnol 2016; 40:149-154. [PMID: 27149017 DOI: 10.1016/j.copbio.2016.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 11/23/2022]
Abstract
Elastomers are popular in vascular engineering applications, as they offer the ability to design implants that match the compliance of native tissue. By mimicking the natural tissue environment, elastic materials are able to integrate within the body to promote repair and avoid the adverse physiological responses seen in rigid alternatives that often disrupt tissue function. The design of elastomers has continued to evolve, moving from a focus on long term implants to temporary resorbable implants that support tissue regeneration. This has been achieved through designing chemistries and processing methodologies that control material behavior and bioactivity, while maintaining biocompatibility in vivo. Here we review the latest developments in synthetic and natural elastomers and their application in cardiovascular treatments.
Collapse
|
10
|
Weiss AS. Perspectives on the Molecular and Biological Implications of Tropoelastin in Human Tissue Elasticity. Aust J Chem 2016. [DOI: 10.1071/ch16452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The elasticity of a range of vertebrate and particularly human tissues depends on the dynamic and persistent protein elastin. This elasticity is diverse, and comprises skin, blood vessels, and lung, and is essential for tissue viability. Elastin is predominantly made by assembling tropoelastin, which is an asymmetric 20-nm-long protein molecule. This overview considers tropoelastin’s molecular features and biological interactions in the context of its value in tissue repair.
Collapse
|