1
|
Boudná M, Blavet N, Samoilenko T, Macháčková T, Jugas R, Vychytilová-Faltejsková P, Boudný M, Bartošová R, Kotouček J, Bystrý V, Koželková K, Slabý O, Součková K. Analysis of extracellular vesicles of frequently used colorectal cancer cell lines. BMC Cancer 2025; 25:555. [PMID: 40148827 PMCID: PMC11951637 DOI: 10.1186/s12885-025-13936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Colorectal cancer (CRC) ranks as the second most prevalent malignancy globally, highlighting the urgent need for more effective diagnostic and therapeutic strategies, as well as a deeper understanding of its molecular basis. Extensive research has demonstrated that cells actively secrete extracellular vesicles (EVs) to mediate intercellular communication at both proximal and distal sites. In this study, we conducted a comprehensive analysis of the RNA content of small extracellular vesicles (sEVs) secreted into the culture media of five frequently utilised CRC cell lines (RKO, HCT116, HCT15, HT29, and DLD1). RNA sequencing data revealed significant insights into the RNA profiles of these sEVs, identifying nine protein-coding genes and fourteen long non-coding RNA (lncRNA) genes that consistently ranked among the top 30 most abundant across all cell lines. Notably, the genes found in sEVs were highly similar among the cell lines, indicating a conserved molecular signature. Several of these genes have been previously documented in the context of cancer biology, while others represent novel discoveries. These findings provide valuable insights into the molecular cargo of sEVs in CRC, potentially unveiling novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Boudná
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Nicolas Blavet
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tetiana Samoilenko
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Táňa Macháčková
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Robin Jugas
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petra Vychytilová-Faltejsková
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Miroslav Boudný
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Renata Bartošová
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Kotouček
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Vojtěch Bystrý
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kateřina Koželková
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Ondřej Slabý
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Kamila Součková
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
2
|
Hof JP, Vermeulen SH, Coolen ACC, Galesloot TE. Fast and accurate recurrent event analysis for genome-wide association studies. Genet Epidemiol 2023. [PMID: 37060326 DOI: 10.1002/gepi.22525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/05/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Many diseases recur after recovery, for example, recurrences in cancer and infections. However, research is often focused on analysing only time-to-first recurrence, thereby ignoring any subsequent recurrences that may occur after the first. Statistical models for the analysis of recurrent events are available, of which the extended Cox proportional hazards frailty model is the current state-of-the-art. However, this model is too statistically complex for computationally efficient application in high-dimensional data sets, including genome-wide association studies (GWAS). Here, we develop an application for fast and accurate recurrent event analysis in GWAS, called SPARE (SaddlePoint Approximation for Recurrent Event analysis). In SPARE, every DNA variant is tested for association with recurrence risk using a modified score statistic. A saddlepoint approximation is implemented to achieve statistical accuracy. SPARE controls the Type I error, and its statistical power is similar to existing recurrent event models, yet SPARE is significantly faster. An application of SPARE in a recurrent event GWAS on bladder cancer for 6.2 million DNA variants in 1,443 individuals required less than 15 min, whereas existing recurrent event methods would require several weeks.
Collapse
Affiliation(s)
- Jasper P Hof
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sita H Vermeulen
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anthony C C Coolen
- Department of Biophysics, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | - Tessel E Galesloot
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Yamada S, Osakabe M, Uesugi N, Yanagawa N, Matsumoto T, Suzuki H, Sugai T. Genome-wide analysis of colorectal cancer based on gene-based somatic copy number alterations during neoplastic progression within the same tumor. Cancer Med 2023; 12:4446-4454. [PMID: 35920319 PMCID: PMC9972084 DOI: 10.1002/cam4.5117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The objective of this study was to elucidate the association between neoplastic progression and somatic copy number alterations (SCNAs) occurring within the same colorectal cancer (CRC) tumor. METHODS We investigated SCNAs to identify the progression from a high-grade intramucosal lesion (HGIL) to an invasive front lesion (IFL), via an invasive submucosal lesion (ISL), within the same tumor using a crypt isolation method combined with a SNP array. Immunohistochemistry was also performed. RESULTS We identified 51 amplified genes that potentially promote progression from HGIL to ISL and 6 amplified genes involved in the progression from ISL to IFL. Of the 51 genes involved in HGIL to ISL progression, TORC1, MSLN, and STUB1, which are closely associated with CRC, were identified as candidate markers of submucosal invasion. However, no candidate genes were identified among the six genes associated with ISL to IFL progression. In addition, the number of total SCNAs and the number of gains were correlated with cancer progression (from HGIL to IFL). Finally, immunohistochemistry revealed higher expression of TORC1, MSLN, and STUB1 in ISL than in HGIL. CONCLUSIONS These results suggest that specific SCNAs are required for acquisition of invasive ability in CRC, and the affected genes are potential markers of invasion.
Collapse
Affiliation(s)
- Shun Yamada
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityYahabaJapan
- Division of Gastroenterology, Department of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityYahabaJapan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityYahabaJapan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityYahabaJapan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Hiromu Suzuki
- Department of Molecular BiologySapporo Medical UniversitySapporoJapan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityYahabaJapan
| |
Collapse
|
4
|
Identification of Small Nucleolar RNA SNORD60 as a Potential Biomarker and Its Clinical Significance in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5501171. [PMID: 35711521 PMCID: PMC9197630 DOI: 10.1155/2022/5501171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer deaths in the world and often diagnosed at an advanced stage, so it is urgent to explore the pathogenesis and new diagnostic biomarkers. Accumulated evidences suggested that small nucleolar RNAs (snoRNAs) played a key role in the development and progression of NSCLC. To examine differential expression snoRNA profile and identify snoRNAs with clinical significance in lung adenocarcinoma (LUAD), The Cancer Genome Atlas (TCGA) LUAD RNA sequencing dataset was used to investigate differential expression snoRNA signatures and compared with snoRNA PCR array analysis in pair-matched LUAD tissues. The diagnostic ability of SONRD60 was assessed using a receiver operating characteristic (ROC) curve. The Kaplan-Meier method was used to plot survival curves. Univariate and multivariate Cox regression analyses were used to investigate the prognostic effect of SNORD60 expression on LUAD. The results showed that SNORD60 was a significantly upregulated snoRNA after intersection analysis in LUAD cases. SNORD60 has 74.2% sensitivity and 75.3% specificity for the diagnosis of LUAD. Increased SNORD60 expression was linked with lymph node metastases and the TNM stage (P < 0.05). Pathological T category and lymph node metastases were independent prognostic factors for overall survival in a multivariate Cox regression study. Our findings demonstrated that SNORD60, a small nucleolar RNA, has an oncogenic function in LUAD and might be used as a new early diagnostic biomarker for LUAD.
Collapse
|
5
|
Okita K, Hara Y, Okura H, Hayashi H, Sasaki Y, Masuko S, Kitadai E, Masuko K, Yoshimoto S, Hayashi N, Sugiura R, Endo Y, Okazaki S, Arai S, Yoshioka T, Matsumoto T, Makino Y, Komiyama H, Sakamoto K, Masuko T. Antitumor effects of novel mAbs against cationic amino acid transporter 1 (CAT1) on human CRC with amplified CAT1 gene. Cancer Sci 2020; 112:563-574. [PMID: 33211385 PMCID: PMC7894011 DOI: 10.1111/cas.14741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Copy number alterations detected by comparative genomic hybridization (CGH) can lead to the identification of novel cancer‐related genes. We analyzed chromosomal aberrations in a set of 100 human primary colorectal cancers (CRCs) using CGH and found a solute carrier (SLC) 7A1 gene, which encodes cationic amino acid transporter 1 (CAT1) with 14 putative transmembrane domains, in a chromosome region (13q12.3) with a high frequency of gene amplifications. SLC7A1/CAT1 is a transporter responsible for the uptake of cationic amino acids (arginine, lysine, and ornithine) essential for cellular growth. Microarray and PCR analyses have revealed that mRNA transcribed from CAT1 is overexpressed in more than 70% of human CRC samples, and RNA interference–mediated knockdown of CAT1 inhibited the cell growth of CRCs. Rats were immunized with rat hepatoma cells expressing CAT1 tagged with green fluorescent protein (GFP), and rat splenocytes were fused with mouse myeloma cells. Five rat monoclonal antibodies (mAbs) (CA1 ~ CA5) reacting with HEK293 cells expressing CAT1‐GFP in a GFP expression–dependent manner were selected from established hybridoma clones. Novel anti‐CAT1 mAbs selectively reacted with human CRC tumor tissues compared with adjacent normal tissues according to immuno‐histochemical staining and bound strongly to numerous human cancer cell lines by flow cytometry. Anti‐CAT1 mAbs exhibited internalization activity, antibody‐dependent cellular cytotoxicity, and migration inhibition activity against CRC cell lines. Furthermore, CA2 inhibited the in vivo growth of human HT29 and SW‐C4 CRC tumors in nude mice. This study suggested CAT1 to be a promising target for mAb therapy against CRCs.
Collapse
Affiliation(s)
- Kouki Okita
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Production and Manufacturing, Carna Biosciences, Inc., Kobe, Japan
| | - Yuta Hara
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Hiroshi Okura
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Hidemi Hayashi
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Yoko Sasaki
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Sachiko Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Eri Kitadai
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Kazue Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Soshi Yoshimoto
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Natsumi Hayashi
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Yuichi Endo
- Natural Drug Resources, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Shogo Okazaki
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sayaka Arai
- Field of Basic Science, Department of Occupational therapy, Graduate School of Health Sciences, Akita University, Akita, Japan
| | - Toshiaki Yoshioka
- Field of Basic Science, Department of Occupational therapy, Graduate School of Health Sciences, Akita University, Akita, Japan
| | - Toshiharu Matsumoto
- Department of Diagnostic Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yasutaka Makino
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hiromitsu Komiyama
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Natural Drug Resources, Faculty of Pharmacy, Kindai University, Osaka, Japan
| |
Collapse
|
6
|
Li X, Li X, Yin Z, Jiang M, Tian W, Tang M, Zhou B. Polymorphisms of rs4787050 and rs8045980 are associated with lung cancer risk in northeast Chinese female nonsmokers. Biomark Med 2019; 13:1119-1128. [PMID: 31512508 DOI: 10.2217/bmm-2018-0482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: We studied the association between two single-nucleotide polymorphisms (SNPs: rs4787050 and rs8045980) in RBFOX1 and lung cancer risk, and explored the interaction between the two SNPs and exposure to cooking oil fume on lung cancer risk in northeast Chinese female nonsmokers. Methods: Northeast Chinese female nonsmokers were enrolled into the study (people with lung cancer, 647; people without lung cancer, 675). All statistical analyses were performed using SPSS software. Results: The SNPs rs4787050 and rs8045980 showed a significant association with susceptibility to lung cancer. Moreover, cooking oil fume exposure was found to increase the risk of lung cancer. However, no gene-environment interactions were discovered. Conclusion: The present study revealed that rs4787050 and rs8045980 in RBFOX1 may be meaningful as a novel biomarker for lung cancer susceptibility.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Min Jiang
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Wen Tian
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| |
Collapse
|
7
|
Bramhecha YM, Guérard KP, Rouzbeh S, Scarlata E, Brimo F, Chevalier S, Hamel L, Dragomir A, Aprikian AG, Lapointe J. Genomic Gain of 16p13.3 in Prostate Cancer Predicts Poor Clinical Outcome after Surgical Intervention. Mol Cancer Res 2017; 16:115-123. [PMID: 28993510 DOI: 10.1158/1541-7786.mcr-17-0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/27/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Identifying tumors with high metastatic potential is key to improving the clinical management of prostate cancer. Recently, we characterized a chromosome 16p13.3 gain frequently observed in prostate cancer metastases and now demonstrate the prognostic value of this genomic alteration in surgically treated prostate cancer. Dual-color FISH was used to detect 16p13.3 gain on a human tissue microarray representing 304 primary radical prostatectomy (RP) cases with clinical follow-up data. The results were validated in an external dataset. The 16p13.3 gain was detected in 42% (113/267) of the specimens scorable by FISH and was significantly associated with clinicopathologic features of aggressive prostate cancer, including high preoperative PSA (P = 0.03) levels, high Gleason score (GS, P < 0.0001), advanced pathologic tumor stage (P < 0.0001), and positive surgical margins (P = 0.009). The 16p13.3 gain predicted biochemical recurrence (BCR) in the overall cohort (log-rank P = 0.0005), and in subsets of patients with PSA ≤10 or GS ≤7 (log-rank P = 0.02 and P = 0.006, respectively). Moreover, combining the 16p13.3 gain status with standard prognostic markers improved BCR risk stratification and identified a subgroup of patients with high probability of recurrence. The 16p13.3 gain status was also associated with an increased risk of developing distant metastases (log-rank P = 0.03) further substantiating its role in prostate cancer progression.Implications: This study demonstrates the prognostic significance of the 16p13.3 genomic gain in primary prostate tumors, suggesting potential utility in the clinical management of the disease by identifying patients at high risk of recurrence who may benefit from adjuvant therapies. Mol Cancer Res; 16(1); 115-23. ©2017 AACR.
Collapse
Affiliation(s)
- Yogesh M Bramhecha
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Karl-Philippe Guérard
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Shaghayegh Rouzbeh
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Eleonora Scarlata
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Simone Chevalier
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Lucie Hamel
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Alice Dragomir
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Armen G Aprikian
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Jacques Lapointe
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. .,Division of Experimental Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
8
|
Musolf AM, Simpson CL, de Andrade M, Mandal D, Gaba C, Yang P, Li Y, You M, Kupert EY, Anderson MW, Schwartz AG, Pinney SM, Amos CI, Bailey-Wilson JE. Parametric Linkage Analysis Identifies Five Novel Genome-Wide Significant Loci for Familial Lung Cancer. Hum Hered 2017; 82:64-74. [PMID: 28817824 DOI: 10.1159/000479028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/28/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE One of four American cancer patients dies of lung cancer. Environmental factors such as tobacco smoking are known to affect lung cancer risk. However, there is a genetic factor to lung cancer risk as well. Here, we perform parametric linkage analysis on family-based genotype data in an effort to find genetic loci linked to the disease. METHODS 197 individuals from families with a high-risk history of lung cancer were recruited and genotyped using an Illumina array. Parametric linkage analyses were performed using an affected-only phenotype model with an autosomal dominant inheritance using a disease allele frequency of 0.01. Three types of analyses were performed: single variant two-point, collapsed haplotype pattern variant two-point, and multipoint analysis. RESULTS Five novel genome-wide significant loci were identified at 18p11.23, 2p22.2, 14q13.1, 16p13, and 20q13.11. The families most informative for linkage were also determined. CONCLUSIONS The 5 novel signals are good candidate regions, containing genes that have been implicated as having somatic changes in lung cancer or other cancers (though not in germ line cells). Targeted sequencing on the significant loci is planned to determine the causal variants at these loci.
Collapse
Affiliation(s)
- Anthony M Musolf
- National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhao H, Shi ZZ, Jiang R, Zhao DB, Zhou HT, Liang JW, Bi XY, Zhao JJ, Li ZY, Zhou JG, Huang Z, Zhang YF, Wang J, Xu X, Cai Y, Wang MR, Zhang Y. Metastasis associated genomic aberrations in stage II rectal cancer. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Ding C, Fan X, Wu G. Peroxiredoxin 1 - an antioxidant enzyme in cancer. J Cell Mol Med 2016; 21:193-202. [PMID: 27653015 PMCID: PMC5192802 DOI: 10.1111/jcmm.12955] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs), a ubiquitous family of redox‐regulating proteins, are reported of potential to eliminate various reactive oxygen species (ROS). As a major member of the antioxidant enzymes, PRDX1 can become easily over‐oxidized on its catalytically active cysteine induced by a variety of stimuli in vitro and in vivo. In nucleus, oligomeric PRDX1 directly associates with p53 or transcription factors such as c‐Myc, NF‐κB and AR, and thus affects their bioactivities upon gene regulation, which in turn induces or suppresses cell death. Additionally, PRDX1 in cytoplasm has anti‐apoptotic potential through direct or indirect interactions with several ROS‐dependent (redox regulation) effectors, including ASK1, p66Shc, GSTpi/JNK and c‐Abl kinase. PRDX1 is proven to be a versatile molecule regulating cell growth, differentiation and apoptosis. Recent studies have found that PRDX1 and/or PRDX1‐regulated ROS‐dependent signalling pathways play an important role in the progression and metastasis of human tumours, particularly in breast, oesophageal and lung cancers. In this paper, we review the structure, effector functions of PRDX1, its role in cancer and the pivotal role of ROS in anticancer treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Conconi D, Redaelli S, Bovo G, Leone BE, Filippi E, Ambrosiani L, Cerrito MG, Grassilli E, Giovannoni R, Dalprà L, Lavitrano M. Unexpected frequency of genomic alterations in histologically normal colonic tissue from colon cancer patients. Tumour Biol 2016; 37:13831-13842. [PMID: 27481518 PMCID: PMC5097093 DOI: 10.1007/s13277-016-5181-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
As shown by genomic studies, colorectal cancer (CRC) is a highly heterogeneous disease, where copy number alterations (CNAs) may greatly vary among different patients. To explore whether CNAs may be present also in histologically normal tissues from patients affected by CRC, we performed CGH + SNP Microarray on 15 paired tumoral and normal samples. Here, we report for the first time the occurrence of CNAs as a common feature of the histologically normal tissue from CRC patients, particularly CNAs affecting different oncogenes and tumor-suppressor genes, including some not previously reported in CRC and others known as being involved in tumor progression. Moreover, from the comparison of normal vs paired tumoral tissue, we were able to identify three groups: samples with an increased number of CNAs in tumoral vs normal tissue, samples with a similar number of CNAs in both tissues, and samples with a decrease of CNAs in tumoral vs normal tissue, which may be likely due to a selection of the cell population within the tumor. In conclusion, our approach allowed us to uncover for the first time an unexpected frequency of genetic alteration in normal tissue, suggesting that tumorigenic genetic lesions are already present in histologically normal colonic tissue and that the use in array comparative genomic hybridization (CGH) studies of normal samples as reference for the paired tumors can lead to misrepresented genomic data, which may be incomplete or limited, especially if used for the research of target molecules for personalized therapy and for the possible correlation with clinical outcome.
Collapse
Affiliation(s)
- Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Giorgio Bovo
- Unit of Pathology, San Gerardo Hospital, Monza, Italy
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.,Section of Pathology, Desio Hospital, Desio, Italy
| | | | | | - Maria Grazia Cerrito
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Emanuela Grassilli
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.,Medical Genetics Laboratory, San Gerardo Hospital, Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| |
Collapse
|