1
|
Makrogiannis S, Zheng K, Harris C. Discriminative Localized Sparse Approximations for Mass Characterization in Mammograms. Front Oncol 2021; 11:725320. [PMID: 35036353 PMCID: PMC8755640 DOI: 10.3389/fonc.2021.725320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
The most common form of cancer among women in both developed and developing countries is breast cancer. The early detection and diagnosis of this disease is significant because it may reduce the number of deaths caused by breast cancer and improve the quality of life of those effected. Computer-aided detection (CADe) and computer-aided diagnosis (CADx) methods have shown promise in recent years for aiding in the human expert reading analysis and improving the accuracy and reproducibility of pathology results. One significant application of CADe and CADx is for breast cancer screening using mammograms. In image processing and machine learning research, relevant results have been produced by sparse analysis methods to represent and recognize imaging patterns. However, application of sparse analysis techniques to the biomedical field is challenging, as the objects of interest may be obscured because of contrast limitations or background tissues, and their appearance may change because of anatomical variability. We introduce methods for label-specific and label-consistent dictionary learning to improve the separation of benign breast masses from malignant breast masses in mammograms. We integrated these approaches into our Spatially Localized Ensemble Sparse Analysis (SLESA) methodology. We performed 10- and 30-fold cross validation (CV) experiments on multiple mammography datasets to measure the classification performance of our methodology and compared it to deep learning models and conventional sparse representation. Results from these experiments show the potential of this methodology for separation of malignant from benign masses as a part of a breast cancer screening workflow.
Collapse
Affiliation(s)
- Sokratis Makrogiannis
- Math Imaging and Visual Computing Lab, Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, Dover, DE, United States
| | | | | |
Collapse
|
2
|
Wu J, Dong Q, Gui J, Zhang J, Su Y, Chen K, Thompson PM, Caselli RJ, Reiman EM, Ye J, Wang Y. Predicting Brain Amyloid Using Multivariate Morphometry Statistics, Sparse Coding, and Correntropy: Validation in 1,101 Individuals From the ADNI and OASIS Databases. Front Neurosci 2021; 15:669595. [PMID: 34421510 PMCID: PMC8377280 DOI: 10.3389/fnins.2021.669595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Biomarker assisted preclinical/early detection and intervention in Alzheimer’s disease (AD) may be the key to therapeutic breakthroughs. One of the presymptomatic hallmarks of AD is the accumulation of beta-amyloid (Aβ) plaques in the human brain. However, current methods to detect Aβ pathology are either invasive (lumbar puncture) or quite costly and not widely available (amyloid PET). Our prior studies show that magnetic resonance imaging (MRI)-based hippocampal multivariate morphometry statistics (MMS) are an effective neurodegenerative biomarker for preclinical AD. Here we attempt to use MRI-MMS to make inferences regarding brain Aβ burden at the individual subject level. As MMS data has a larger dimension than the sample size, we propose a sparse coding algorithm, Patch Analysis-based Surface Correntropy-induced Sparse-coding and Max-Pooling (PASCS-MP), to generate a low-dimensional representation of hippocampal morphometry for each individual subject. Then we apply these individual representations and a binary random forest classifier to predict brain Aβ positivity for each person. We test our method in two independent cohorts, 841 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 260 subjects from the Open Access Series of Imaging Studies (OASIS). Experimental results suggest that our proposed PASCS-MP method and MMS can discriminate Aβ positivity in people with mild cognitive impairment (MCI) [Accuracy (ACC) = 0.89 (ADNI)] and in cognitively unimpaired (CU) individuals [ACC = 0.79 (ADNI) and ACC = 0.81 (OASIS)]. These results compare favorably relative to measures derived from traditional algorithms, including hippocampal volume and surface area, shape measures based on spherical harmonics (SPHARM) and our prior Patch Analysis-based Surface Sparse-coding and Max-Pooling (PASS-MP) methods.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States.,Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jie Gui
- School of Cyber Science and Engineering, Southeast University, Nanjing, China
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Richard J Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Zheng K, Harris C, Bakic P, Makrogiannis S. Spatially localized sparse representations for breast lesion characterization. Comput Biol Med 2020; 123:103914. [PMID: 32768050 PMCID: PMC7416513 DOI: 10.1016/j.compbiomed.2020.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 11/19/2022]
Abstract
RATIONALE The topic of sparse representation of samples in high dimensional spaces has attracted growing interest during the past decade. In this work, we develop sparse representation-based methods for classification of radiological imaging patterns of breast lesions into benign and malignant states. METHODS We propose a spatial block decomposition method to address irregularities of the approximation problem and to build an ensemble of classifiers (CL) that we expect to yield more accurate numerical solutions than conventional whole-region of interest (ROI) sparse analyses. We introduce two classification decision strategies based on maximum a posteriori probability (BBMAP-S), or a log likelihood function (BBLL-S). RESULTS To evaluate the performance of the proposed approach we used cross-validation techniques on imaging datasets with disease class labels. We utilized the proposed approach for separation of breast lesions into benign and malignant categories in mammograms. The level of difficulty is high in this application and the accuracy may depend on the lesion size. Our results indicate that the proposed integrative sparse analysis addresses the ill-posedness of the approximation problem, producing AUC (area under the receiver operating curve) value of 89.1% for randomized 30-fold cross-validation. CONCLUSIONS Furthermore, our comparative experiments showed that the BBLL-S decision function may yield more accurate classification than BBMAP-S because BBLL-S accounts for possible estimation bias.
Collapse
Affiliation(s)
- Keni Zheng
- Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, 1200 N. DuPont Hwy, Dover, DE, 19901-2277, USA
| | - Chelsea Harris
- Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, 1200 N. DuPont Hwy, Dover, DE, 19901-2277, USA
| | - Predrag Bakic
- Department of Radiology, Univ. of Pennsylvania, Philadelphia, PA, 19152, USA
| | - Sokratis Makrogiannis
- Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, 1200 N. DuPont Hwy, Dover, DE, 19901-2277, USA.
| |
Collapse
|
4
|
Javidi M, Pourreza HR, Harati A. Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 139:93-108. [PMID: 28187898 DOI: 10.1016/j.cmpb.2016.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/22/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Diabetic retinopathy (DR) is a major cause of visual impairment, and the analysis of retinal image can assist patients to take action earlier when it is more likely to be effective. The accurate segmentation of blood vessels in the retinal image can diagnose DR directly. In this paper, a novel scheme for blood vessel segmentation based on discriminative dictionary learning (DDL) and sparse representation has been proposed. The proposed system yields a strong representation which contains the semantic concept of the image. To extract blood vessel, two separate dictionaries, for vessel and non-vessel, capable of providing reconstructive and discriminative information of the retinal image are learned. In the test step, an unseen retinal image is divided into overlapping patches and classified to vessel and non-vessel patches. Then, a voting scheme is applied to generate the binary vessel map. The proposed vessel segmentation method can achieve the accuracy of 95% and a sensitivity of 75% in the same range of specificity 97% on two public datasets. The results show that the proposed method can achieve comparable results to existing methods and decrease false positive vessels in abnormal retinal images with pathological regions. Microaneurysm (MA) is the earliest sign of DR that appears as a small red dot on the surface of the retina. Despite several attempts to develop automated MA detection systems, it is still a challenging problem. In this paper, a method for MA detection, which is similar to our vessel segmentation approach, is proposed. In our method, a candidate detection algorithm based on the Morlet wavelet is applied to identify all possible MA candidates. In the next step, two discriminative dictionaries with the ability to distinguish MA from non-MA object are learned. These dictionaries are then used to classify the detected candidate objects. The evaluations indicate that the proposed MA detection method achieves higher average sensitivity about 2-15%, compared to existing methods.
Collapse
Affiliation(s)
- Malihe Javidi
- Faculty of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran; Machine Vision Lab, Eye Image Analysis Research Group (EIARG), Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid-Reza Pourreza
- Faculty of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran; Machine Vision Lab, Eye Image Analysis Research Group (EIARG), Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ahad Harati
- Faculty of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran; Robot Perception Lab, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|