1
|
Hernandez-Garcia E, Chrysikou E, Kalea AZ. The Interplay between Housing Environmental Attributes and Design Exposures and Psychoneuroimmunology Profile-An Exploratory Review and Analysis Paper in the Cancer Survivors' Mental Health Morbidity Context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10891. [PMID: 34682637 PMCID: PMC8536084 DOI: 10.3390/ijerph182010891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Adult cancer survivors have an increased prevalence of mental health comorbidities and other adverse late-effects interdependent with mental illness outcomes compared with the general population. Coronavirus Disease 2019 (COVID-19) heralds an era of renewed call for actions to identify sustainable modalities to facilitate the constructs of cancer survivorship care and health care delivery through physiological supportive domestic spaces. Building on the concept of therapeutic architecture, psychoneuroimmunology (PNI) indicators-with the central role in low-grade systemic inflammation-are associated with major psychiatric disorders and late effects of post-cancer treatment. Immune disturbances might mediate the effects of environmental determinants on behaviour and mental disorders. Whilst attention is paid to the non-objective measurements for examining the home environmental domains and mental health outcomes, little is gathered about the multidimensional effects on physiological responses. This exploratory review presents a first analysis of how addressing the PNI outcomes serves as a catalyst for therapeutic housing research. We argue the crucial component of housing in supporting the sustainable primary care and public health-based cancer survivorship care model, particularly in the psychopathology context. Ultimately, we illustrate a series of interventions aiming at how housing environmental attributes can trigger PNI profile changes and discuss the potential implications in the non-pharmacological treatment of cancer survivors and patients with mental morbidities.
Collapse
Affiliation(s)
- Eva Hernandez-Garcia
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
| | - Evangelia Chrysikou
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
- Clinic of Social and Family Medicine, Department of Social Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Anastasia Z. Kalea
- Division of Medicine, University College London, London WC1E 6JF, UK;
- Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
| |
Collapse
|
2
|
Otsuki T, Matsuzaki H, Lee S, Kumagai-Takei N, Yamamoto S, Hatayama T, Yoshitome K, Nishimura Y. Environmental factors and human health: fibrous and particulate substance-induced immunological disorders and construction of a health-promoting living environment. Environ Health Prev Med 2015; 21:71-81. [PMID: 26663174 DOI: 10.1007/s12199-015-0499-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/22/2015] [Indexed: 12/30/2022] Open
Abstract
Among the various scientific fields covered in the area of hygiene such as environmental medicine, epidemiology, public health and preventive medicine, we are investigating the immunological effects of fibrous and particulate substances in the environment and work surroundings, such as asbestos fibers and silica particles. In addition to these studies, we have attempted to construct health-promoting living conditions. Thus, in this review we will summarize our investigations regarding the (1) immunological effects of asbestos fibers, (2) immunological effects of silica particles, and (3) construction of a health-promoting living environment. This review article summarizes the 2014 Japanese Society for Hygiene (JSH) Award Lecture of the 85th Annual Meeting of the JSH entitled "Environmental health effects: immunological effects of fibrous and particulate matter and establishment of health-promoting environments" presented by the first author of this manuscript, Prof. Otsuki, Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan, the recipient of the 2014 JSH award. The results of our experiments can be summarized as follows: (1) asbestos fibers reduce anti-tumor immunity, (2) silica particles chronically activate responder and regulatory T cells causing an unbalance of these two populations of T helper cells, which may contribute to the development of autoimmune disorders frequently complicating silicosis, and (3) living conditions to enhance natural killer cell activity were developed, which may promote the prevention of cancers and diminish symptoms of virus infections.
Collapse
Affiliation(s)
- Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Hidenori Matsuzaki
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Suni Lee
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Naoko Kumagai-Takei
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Shoko Yamamoto
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Tamayo Hatayama
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Kei Yoshitome
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yasumitsu Nishimura
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
3
|
Song W, Cao Y, Wang D, Hou G, Shen Z, Zhang S. An Investigation on Formaldehyde Emission Characteristics of Wood Building Materials in Chinese Standard Tests: Product Emission Levels, Measurement Uncertainties, and Data Correlations between Various Tests. PLoS One 2015; 10:e0144374. [PMID: 26656316 PMCID: PMC4675528 DOI: 10.1371/journal.pone.0144374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
As a large producer and consumer of wood building materials, China suffers product formaldehyde emissions (PFE) but lacks systematic investigations and basic data on Chinese standard emission tests (CST), so this paper presented a first effort on this issue. The PFE of fiberboards, particleboards, blockboards, floorings, and parquets manufactured in Beijing region were characterized by the perforator extraction method (PE), 9–11 L and 40 L desiccator methods (D9, D40), and environmental chamber method (EC) of the Chinese national standard GB 18580; based on statistics of PFE data, measurement uncertainties in CST were evaluated by the Monte Carlo method; moreover, PFE data correlations between tests were established. Results showed: (1) Different tests may give slightly different evaluations on product quality. In PE and D9 tests, blockboards and parquets reached E1 grade for PFE, which can be directly used in indoor environment; but in D40 and EC tests, floorings and parquets achieved E1. (2) In multiple tests, PFE data characterized by PE, D9, and D40 complied with Gaussian distributions, while those characterized by EC followed log-normal distributions. Uncertainties in CST were overall low, with uncertainties for 20 material-method combinations all below 7.5%, and the average uncertainty for each method under 3.5%, thus being acceptable in engineering application. A more complicated material structure and a larger test scale caused higher uncertainties. (3) Conventional linear models applied to correlating PFE values between PE, D9, and EC, with R2 all over 0.840, while novel logarithmic (exponential) models can work better for correlations involving D40, with R2 all beyond 0.901. This research preliminarily demonstrated the effectiveness of CST, where results for D40 presented greater similarities to EC—the currently most reliable test for PFE, thus highlighting the potential of Chinese D40 as a more practical approach in production control and risk assessment.
Collapse
Affiliation(s)
- Wei Song
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, China
| | - Yang Cao
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
| | - Dandan Wang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
| | - Guojun Hou
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
| | - Zaihua Shen
- R & D Center for Natural Fiber Composites and Environmentally Friendly Adhesives, Zhejiang Chengzhu Advanced Material Technology Co., Ltd., Shaoxing, China
| | - Shuangbao Zhang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|