1
|
Němečková K, Mareš J, Košek F, Culka A, Dudák J, Tymlová V, Žemlička J, Jehlička J. Comparative analysis of cyanobacterial communities in gypsum outcrops: insights from sites in Israel and Poland. Extremophiles 2024; 28:37. [PMID: 39080013 DOI: 10.1007/s00792-024-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/16/2024] [Indexed: 11/15/2024]
Abstract
Today, the biodiversity of endolithic microbial colonisations are only partly understood. In this study, we used a combination of molecular community metabarcoding using the 16S rRNA gene, light microscopy, CT-scan analysis, and Raman spectroscopy to describe gypsum endolithic communities in 2 sites-southern Poland and northern Israel. The obtained results have shown that despite different geographical areas, climatic conditions, and also physical features of colonized gypsum outcrops, both of these sites have remarkably similar microbial and pigment compositions. Cyanobacteria dominate both of the gypsum habitats, followed by Chloroflexi and Pseudomonadota. Among cyanobacteria, Thermosynechococcaceae were more abundant in Israel while Chroococcidiopsidaceae in Poland. Interestingly, no Gloeobacteraceae sequences have been found in Poland, only in Israel. Some of the obtained 16S rRNA gene sequences of cyanobacteria matched previously detected sequences from endolithic communities in various substrates and geographical regions, supporting the hypothesis of global metacommunity, but more data are still needed. Using Raman spectroscopy, cyanobacterial UV-screening pigments-scytonemin and gloeocapsin have been detected alongside carotenoids, chlorophyll a and melanin. These pigments can serve as potential biomarkers for basic taxonomic identification of cyanobacteria. Overall, this study provides more insight into the diversity of cyanobacterial endolithic colonisations in gypsum across different areas.
Collapse
Affiliation(s)
- Kateřina Němečková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czech Republic.
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague 8, Prague, Czech Republic.
| | - Jan Mareš
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Institute of Microbiology, Center Algatech, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Filip Košek
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czech Republic
| | - Adam Culka
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Dudák
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czechia
| | - Veronika Tymlová
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czechia
| | - Jan Žemlička
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czechia
| | - Jan Jehlička
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Villar-dePablo M, Ascaso C, Rodríguez-Pérez E, Urizal M, Wierzchos J, Pérez-Ortega S, de Los Ríos A. Innovative approaches to accurately assess the effectiveness of biocide-based treatments to fight biodeterioration of Cultural Heritage monuments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165318. [PMID: 37422225 DOI: 10.1016/j.scitotenv.2023.165318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The development of diagnostic methods to accurately assess the effects of treatments on lithobiont colonization remains a challenge for the conservation of Cultural Heritage monuments. In this study, we tested the efficacy of biocide-based treatments on microbial colonization of a dolostone quarry, in the short and long-term, using a dual analytical strategy. We applied a metabarcoding approach to characterize fungal and bacterial communities over time, integrated with microscopy techniques to analyze the interactions of microorganisms with the substrate and evaluate the effectiveness. These communities were dominated by the bacterial phyla Actinobacteriota, Proteobacteria and Cyanobacteria, and the fungal order Verrucariales, which include taxa previously reported as biodeteriogenic agents and observed here associated with biodeterioration processes. Following the treatments, changes over time in the abundance profiles depend on taxa. While Cyanobacteriales, Cytophagales and Verrucariales decreased in abundance, other groups, such as Solirubrobacteriales, Thermomicrobiales and Pleosporales increased. These patterns could be related not only to the specific effects of the biocide on the different taxa, but also to different recolonization abilities of those organisms. The different susceptibility to treatments could be associated with the inherent cellular properties of different taxa, but differences in biocide penetration to endolithic microhabitats could be involved. Our results demonstrate the importance of both removing epilithic colonization and applying biocides to act against endolithic forms. Recolonization processes could also explain some of the taxon-dependent responses, especially in the long-term. Taxa showing resistance, and those benefiting from nutrient accumulation in the form of cellular debris following treatments, may have an advantage in colonizing treated areas, pointing to the need for long-term monitoring of a wide range of taxa. This study highlights the potential utility of combining metabarcoding and microscopy to analyze the effects of treatments and design appropriate strategies to combat biodeterioration and establish preventive conservation protocols.
Collapse
Affiliation(s)
- Mar Villar-dePablo
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain
| | - Carmen Ascaso
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain
| | - Esther Rodríguez-Pérez
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain
| | | | - Jacek Wierzchos
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain
| | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Plaza Murillo 2, E-28014 Madrid, Spain
| | - Asunción de Los Ríos
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain.
| |
Collapse
|
3
|
Spairani-Berrio Y, Huesca-Tortosa JA, Rodriguez-Navarro C, Gonzalez-Muñoz MT, Jroundi F. Bioconsolidation of Damaged Construction Calcarenites and Evaluation of the Improvement in Their Petrophysical and Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6043. [PMID: 37687736 PMCID: PMC10488494 DOI: 10.3390/ma16176043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Bioconsolidation treatment using bacterial carbonatogenesis has been proposed as an environmentally friendly strategy for the efficient preservation of damaged stones, particularly suitable for carbonate stones. The study presented here deals with the evaluation of the performance of this treatment, applied to damaged carbonate stones in two historical buildings in Spain. The methodology applied in this research serves as a reference for future similar studies. Results showed significant improvement in the petrophysical and mechanical properties of the damaged stone following the treatment through the production of calcite and vaterite by the abundant carbonatogenic bacteria inhabiting the stone. These bacteria were able to effectively consolidate weathered areas if an adequate nutritional solution was employed, thereby augmenting the stone's resistance, as evidenced by the Drilling Resistance Measurement System (DRMS). FESEM images showed calcified bacteria and calcified exopolymeric substances (EPS) consolidating stone minerals without blocking their pores. In addition to consolidation, this biotreatment improves the stone's behavior against water absorption and increases the contact angle of water droplets without significant modifications in the pore size or diminishing vapor permeability. No color changes are observed. Overall, these results show that the application of the nutritional solution (M-3P) for in situ consolidation of different types of porous carbonate building stones is a highly effective conservation method, with no modification of the chemical composition of the treated materials.
Collapse
Affiliation(s)
- Yolanda Spairani-Berrio
- Department of Architectural Constructions, University of Alicante, Carretera de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Spain;
| | - J. Antonio Huesca-Tortosa
- Department of Architectural Constructions, University of Alicante, Carretera de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Spain;
| | - Carlos Rodriguez-Navarro
- Department of Mineralogy and Petrology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain;
| | - María Teresa Gonzalez-Muñoz
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain; (M.T.G.-M.); (F.J.)
| | - Fadwa Jroundi
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain; (M.T.G.-M.); (F.J.)
| |
Collapse
|
4
|
Cattò C, Mu A, Moreau JW, Wang N, Cappitelli F, Strugnell R. Biofilm colonization of stone materials from an Australian outdoor sculpture: Importance of geometry and exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117948. [PMID: 37080094 DOI: 10.1016/j.jenvman.2023.117948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
The safeguarding of Australian outdoor stone heritage is currently limited by a lack of information concerning mechanisms responsible for the degradation of the built heritage. In this study, the bacterial community colonizing the stone surface of an outdoor sculpture located at the Church of St. John the Evangelist in Melbourne was analysed, providing an overview of the patterns of microbial composition associated with stone in an anthropogenic context. Illumina MiSeq 16S rRNA gene sequencing together with confocal laser microscope investigations highlighted the bacterial community was composed of both phototrophic and chemotrophic microorganisms characteristic of stone and soil, and typical of arid, salty and urban environments. Cardinal exposure, position and surface geometry were the most important factors in determining the structure of the microbial community. The North-West exposed areas on the top of the sculpture with high light exposure gave back the highest number of sequences and were dominated by Cyanobacteria. The South and West facing in middle and lower parts of the sculpture received significantly lower levels of radiation and were dominated by Actinobacteria. Proteobacteria were observed as widespread on the sculpture. This pioneer research provided an in-depth investigation of the microbial community structure on a deteriorated artistic stone in the Australian continent and provides information for the identification of deterioration-associated microorganisms and/or bacteria beneficial for stone preservation.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milano, Italy; Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Andre Mu
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - John W Moreau
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom; School of Geographical, Atmospheric and Earth Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Nancy Wang
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Richard Strugnell
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Marín-Ortega S, Calvo I Torras MÀ, Iglesias-Campos MÁ. Correlation tests between relative light unit and colony forming unit for improving adenosine triphosphate bioluminescence analysis in bacterial consolidation treatments on palaeontological heritage. LUMINESCENCE 2022; 37:2129-2138. [PMID: 36327119 DOI: 10.1002/bio.4403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
In this article bacterial carbonate mineralization treatments are proposed as a novel strategy for decayed fossils and palaeontological heritage conservation; specifically, by means of inoculation of Myxococcus xanthus, a bacterium of proven effectiveness in ornamental stone bioconsolidation. Bioconsolidation treatments can be very effective, stable, nontoxic, environmentally friendly, and chemically compatible with fossil heritage. The method reproduces what nature has been doing for millennia with fossils that have been permineralized by bacterial calcium carbonate precipitation. There is, however, some concern that bacterial inoculation could lead to the growth of undesirable microbiota, which could subsequently damage the fossil substrate. Because of this, the use of bacteria on heritage items must be meticulously monitored and analysis strategies should be carried out to detect bacteria viability during and after treatments. For this purpose, adenosine triphosphate assay is proposed in this article as a fast, affordable, portable, and easy-to-use system for conservators. as ATP assay results are relative and difficult to relate to colony forming unit, this study aims to improve their applicability by examining the correlation between ATP analysis and total viable bacteria count in the specific case of M. xanthus. This research provides reference and correlatable data to obtain an approximate estimation of M. xanthus viable bacterial colonies based on relative light unit data.
Collapse
Affiliation(s)
- Silvia Marín-Ortega
- Conservation-Restoration Department, Escola Superior de Conservació i Restauració de Béns Culturals de Catalunya, Barcelona, Spain.,Heritage Conservation-Restoration Research Group. Arts and Conservation-Restoration Department, Faculty of Fine Arts, Universitat de Barcelona, Spain
| | - M Àngels Calvo I Torras
- Applied and Environmental Microbiology Research Group. Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Spain
| | - Manuel Ángel Iglesias-Campos
- Heritage Conservation-Restoration Research Group. Arts and Conservation-Restoration Department, Faculty of Fine Arts, Universitat de Barcelona, Spain
| |
Collapse
|
6
|
Fatemi S, Haelewaters D, Urbina H, Brown S, Houston ML, Aime MC. Sporobolomyces lactucae sp. nov. (Pucciniomycotina, Microbotryomycetes, Sporidiobolales): An Abundant Component of Romaine Lettuce Phylloplanes. J Fungi (Basel) 2022; 8:jof8030302. [PMID: 35330304 PMCID: PMC8951336 DOI: 10.3390/jof8030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Shifts in food microbiomes may impact the establishment of human pathogens, such as virulent lineages of Escherichia coli, and thus are important to investigate. Foods that are often consumed raw, such as lettuce, are particularly susceptible to such outbreaks. We have previously found that an undescribed Sporobolomyces yeast is an abundant component of the mycobiome of commercial romaine lettuce (Lactuca sativa). Here, we formally describe this species as Sporobolomyces lactucae sp. nov. (Pucciniomycotina, Microbotryomycetes, and Sporidiobolales). We isolated multiple strains of this yeast from commercial romaine lettuce purchased from supermarkets in Illinois and Indiana; additional isolates were obtained from various plant phylloplanes in California. S. lactucae is a red-pigmented species that is similar in appearance to other members of the genus Sporobolomyces. However, it can be differentiated by its ability to assimilate glucuronate and D-glucosamine. Gene genealogical concordance supports S. lactucae as a new species. The phylogenetic reconstruction of a four-locus dataset, comprising the internal transcribed spacer and large ribosomal subunit D1/D2 domain of the ribosomal RNA gene, translation elongation factor 1-α, and cytochrome B, places S. lactucae as a sister to the S. roseus clade. Sporobolomyces lactucae is one of the most common fungi in the lettuce microbiome.
Collapse
Affiliation(s)
- Samira Fatemi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
| | - Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
- Research Group Mycology, Department of Biology, Ghent University, 9000 Ghent, Belgium
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Hector Urbina
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, USA
| | - Samuel Brown
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
| | - Makenna L. Houston
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
- Correspondence:
| |
Collapse
|
7
|
Abstract
Cultural heritage buildings of stone construction require careful restorative actions to maintain them as close to the original condition as possible. This includes consolidation and cleaning of the structure. Traditional consolidants may have poor performance due to structural drawbacks such as low adhesion, poor penetration and flexibility. The requirement for organic consolidants to be dissolved in volatile organic compounds may pose environmental and human health risks. Traditional conservation treatments can be replaced by more environmentally acceptable, biologically-based, measures, including bioconsolidation using whole bacterial cells or cell biomolecules; the latter include plant or microbial biopolymers and bacterial cell walls. Biocleaning can employ microorganisms or their extracted enzymes to remove inorganic and organic surface deposits such as sulfate crusts, animal glues, biofilms and felt tip marker graffiti. This review seeks to provide updated information on the innovative bioconservation treatments that have been or are being developed.
Collapse
|
8
|
Profile of microbial communities on carbonate stones of the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing. Appl Microbiol Biotechnol 2016; 100:8537-48. [DOI: 10.1007/s00253-016-7656-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|