1
|
Ji S, Li C, Liu M, Liu Y, Jiang L. Targeting New Functions and Applications of Bacterial Two-Component Systems. Chembiochem 2024; 25:e202400392. [PMID: 38967093 DOI: 10.1002/cbic.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Two-component signal transduction systems (TCSs) are regulatory systems widely distributed in eubacteria, archaea, and a few eukaryotic organisms, but not in mammalian cells. A typical TCS consists of a histidine kinase and a response regulator protein. Functional and mechanistic studies on different TCSs have greatly advanced the understanding of cellular phosphotransfer signal transduction mechanisms. In this concept paper, we focus on the His-Asp phosphotransfer mechanism, the ATP synthesis function, antimicrobial drug design, cellular biosensors design, and protein allostery mechanisms based on recent TCS investigations to inspire new applications and future research perspectives.
Collapse
Affiliation(s)
- Shixia Ji
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Conggang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Maili Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ling Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Kou X, Liu Y, Li C, Liu M, Jiang L. Dimerization and Conformational Exchanges of the Receiver Domain of Response Regulator PhoB from Escherichia coli. J Phys Chem B 2018; 122:5749-5757. [DOI: 10.1021/acs.jpcb.8b01034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinhui Kou
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
3
|
Miguel-Romero L, Casino P, Landete JM, Monedero V, Zúñiga M, Marina A. The malate sensing two-component system MaeKR is a non-canonical class of sensory complex for C4-dicarboxylates. Sci Rep 2017; 7:2708. [PMID: 28577341 PMCID: PMC5457438 DOI: 10.1038/s41598-017-02900-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/20/2017] [Indexed: 11/09/2022] Open
Abstract
Microbial colonization of different environments is enabled to a great extent by the plasticity of their sensory mechanisms, among them, the two-component signal transduction systems (TCS). Here, an example of TCS plasticity is presented: the regulation of L-malate catabolism via malic enzyme by MaeRK in Lactobacillales. MaeKR belongs to the citrate family of TCS as the Escherichia coli DcuSR system. We show that the Lactobacillus casei histidine-kinase MaeK is defective in autophosphorylation activity as it lacks a functional catalytic and ATP binding domain. The cognate response regulator MaeR was poorly phosphorylated at its phosphoacceptor Asp in vitro. This phosphorylation, however, enhanced MaeR binding in vitro to its target sites and it was required for induction of regulated genes in vivo. Elucidation of the MaeR structure revealed that response regulator dimerization is accomplished by the swapping of α4-β5-α5 elements between two monomers, generating a phosphoacceptor competent conformation. Sequence and phylogenetic analyses showed that the MaeKR peculiarities are not exclusive to L. casei as they are shared by the rest of orthologous systems of Lactobacillales. Our results reveal MaeKR as a non-canonical TCS displaying distinctive features: a swapped response regulator and a sensor histidine kinase lacking ATP-dependent kinase activity.
Collapse
Affiliation(s)
- L Miguel-Romero
- Department of Genomic and Proteomic, Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain
| | - P Casino
- Departamento de Bioquímica, Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain
| | - J M Landete
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.,Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7.5, 28040, Madrid, Spain
| | - V Monedero
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - M Zúñiga
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - A Marina
- Department of Genomic and Proteomic, Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain. .,Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, -, Spain.
| |
Collapse
|
4
|
Neuwald AF. Gleaning structural and functional information from correlations in protein multiple sequence alignments. Curr Opin Struct Biol 2016; 38:1-8. [PMID: 27179293 DOI: 10.1016/j.sbi.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 10/24/2022]
Abstract
The availability of vast amounts of protein sequence data facilitates detection of subtle statistical correlations due to imposed structural and functional constraints. Recent breakthroughs using Direct Coupling Analysis (DCA) and related approaches have tapped into correlations believed to be due to compensatory mutations. This has yielded some remarkable results, including substantially improved prediction of protein intra- and inter-domain 3D contacts, of membrane and globular protein structures, of substrate binding sites, and of protein conformational heterogeneity. A complementary approach is Bayesian Partitioning with Pattern Selection (BPPS), which partitions related proteins into hierarchically-arranged subgroups based on correlated residue patterns. These correlated patterns are presumably due to structural and functional constraints associated with evolutionary divergence rather than to compensatory mutations. Hence joint application of DCA- and BPPS-based approaches should help sort out the structural and functional constraints contributing to sequence correlations.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Institute for Genome Sciences and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 801 West Baltimore St., BioPark II, Room 617, Baltimore, MD 21201, United States.
| |
Collapse
|