1
|
Yin X, He Z, Chen K, Ouyang K, Yang C, Li J, Tang H, Cai M. Unveiling the impact of CDK8 on tumor progression: mechanisms and therapeutic strategies. Front Pharmacol 2024; 15:1386929. [PMID: 38606172 PMCID: PMC11006979 DOI: 10.3389/fphar.2024.1386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
CDK8 is an important member of the cyclin-dependent kinase family associated with transcription and acts as a key "molecular switch" in the Mediator complex. CDK8 regulates gene expression by phosphorylating transcription factors and can control the transcription process through Mediator complex. Previous studies confirmed that CDK8 is an important oncogenic factor, making it a potential tumor biomarker and a promising target for tumor therapy. However, CDK8 has also been confirmed to be a tumor suppressor, indicating that it not only promotes the development of tumors but may also be involved in tumor suppression. Therefore, the dual role of CDK8 in the process of tumor development is worth further exploration and summary. This comprehensive review delves into the intricate involvement of CDK8 in transcription-related processes, as well as its role in signaling pathways related to tumorigenesis, with a focus on its critical part in driving cancer progression.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilong He
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kun Chen
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kai Ouyang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changxuan Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Elucidated tumorigenic role of MAML1 and TWIST1 in gastric cancer is associated with Helicobacter pylori infection. Microb Pathog 2021; 162:105304. [PMID: 34818576 DOI: 10.1016/j.micpath.2021.105304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) has a fundamental role in tumor initiation, progression, and metastasis. Helicobacter pylori (HP) induces EMT and thus causes gastric cancer (GC) by deregulating multiple signaling pathways involved in EMT. TWIST1 and MAML1 have been confirmed to be critical inducers of EMT via diverse signaling pathways such as Notch signaling. This study aimed to investigate for the first time possible associations between TWIST1/MAML1 mRNA expression levels, HP infection, and clinicopathological characteristics in GC patients. METHOD TWIST1 and MAML1 mRNA expression levels were evaluated in tumoral and adjacent normal tissues in 73 GC patients using the quantitative reverse transcription PCR (RT-qPCR) method. PCR technique was also applied to examine the infection with HP in GC samples. RESULTS Upregulation of TWIST1 and MAML1 expression was observed in 35 (48%) and 34 (46.6%) of 73 tumor samples, respectively. Co-overexpression of these genes was found in 26 of 73 (35.6%) tumor samples; meanwhile, there was a significant positive correlation between MAML1 and TWIST1 mRNA expression levels (P < 0.001). MAML1 overexpression exhibited meaningful associations with advanced tumor stages (P = 0.006) and nodal metastases (P ˂ 0.001). 34 of 73 (46.6%) tumors tested positive for HP, and meanwhile, MAML1 expression was positively related with T (P = 0.05) and grade (P = 0.0001) in these HP-positive samples. Increased TWIST1 expression was correlated with patient sex (P = 0.035) and advanced tumor grade (P = 0.017) in HP-infected tumors. Furthermore, TWIST1 and MAML1 expression levels were inversely linked with histologic grade in HP-negative tumor samples (P = 0.021 and P = 0.048, respectively). CONCLUSION We propose TWIST1 and MAML1 as potential biomarkers of advanced-stage GC that determine the characteristics and aggressiveness of the disease. Based on accumulating evidence and our findings, they can be introduced as promising therapeutic targets to modify functional abnormalities in cells that promote GC progression. Moreover, HP may enhance GC growth and metastasis by disrupting TWIS1/MAML1 expression patterns and related pathways.
Collapse
|
3
|
Zema S, Pelullo M, Nardozza F, Felli MP, Screpanti I, Bellavia D. A Dynamic Role of Mastermind-Like 1: A Journey Through the Main (Path)ways Between Development and Cancer. Front Cell Dev Biol 2020; 8:613557. [PMID: 33425921 PMCID: PMC7787167 DOI: 10.3389/fcell.2020.613557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Major signaling pathways, such as Notch, Hedgehog (Hh), Wnt/β-catenin and Hippo, are targeted by a plethora of physiological and pathological stimuli, ultimately resulting in the modulation of genes that act coordinately to establish specific biological processes. Many biological programs are strictly controlled by the assembly of multiprotein complexes into the nucleus, where a regulated recruitment of specific transcription factors and coactivators on gene promoter region leads to different transcriptional outcomes. MAML1 results to be a versatile coactivator, able to set up synergistic interlinking with pivotal signaling cascades and able to coordinate the network of cross-talking pathways. Accordingly, despite its original identification as a component of the Notch signaling pathway, several recent reports suggest a more articulated role for MAML1 protein, showing that it is able to sustain/empower Wnt/β-catenin, Hh and Hippo pathways, in a Notch-independent manner. For this reason, MAML1 may be associated to a molecular “switch”, with the function to control the activation of major signaling pathways, triggering in this way critical biological processes during embryonic and post-natal life. In this review, we summarize the current knowledge about the pleiotropic role played by MAML proteins, in particular MAML1, and we recapitulate how it takes part actively in physiological and pathological signaling networks. On this point, we also discuss the contribution of MAML proteins to malignant transformation. Accordingly, genetic alterations or impaired expression of MAML proteins may lead to a deregulated crosstalk among the pathways, culminating in a series of pathological disorders, including cancer development. Given their central role, a better knowledge of the molecular mechanisms that regulate the interplay of MAML proteins with several signaling pathways involved in tumorigenesis may open up novel opportunities for an attractive molecular targeted anticancer therapy.
Collapse
Affiliation(s)
- Sabrina Zema
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina, Italy
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Ma D, Chen X, Shen XB, Sheng LQ, Liu XH. Binding patterns and structure–activity relationship of CDK8 inhibitors. Bioorg Chem 2020; 96:103624. [DOI: 10.1016/j.bioorg.2020.103624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
5
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
6
|
Zhang J, Niu J, Tian B, Zhao M. microRNA-193b protects against myocardial ischemia-reperfusion injury in mouse by targeting mastermind-like 1. J Cell Biochem 2019; 120:14088-14094. [PMID: 30993760 DOI: 10.1002/jcb.28684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022]
Abstract
The current study aimed to explore the functions and roles of microRNA-193b (miR-193b) in the myocardium with ischemia-reperfusion (I/R) injury and a potential therapeutic method for myocardial I/R injury. The mice were subjected to myocardial I/R with or without miR-193b pretreatment. The infarct size and myocardial enzymes were detected. The terminal deoxynucleotidyl transferase dUTP nick-end labeling assay was conducted to investigate the effect of miR-193b on cardiomyocyte apoptosis. The expression levels of miR-193b and mastermind-like 1 (MAML1) were validated by quantitative real-time polymerase chain reaction and Western blot analysis. The results suggested that the miR-193b expression level was significantly downregulated in the myocardium with I/R injury compared with control group. miR-193b overexpression is able to reduce infarct size and myocardial enzymes after myocardial I/R injury. Furthermore, overexpression of miR-193b could alleviate the apoptosis level after myocardial I/R injury. Taken together, the present study demonstrated that upregulated miRNA-193b alleviated myocardial I/R injury via targeting MAML1.
Collapse
Affiliation(s)
- Jinzhu Zhang
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Jingjing Niu
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Baoqing Tian
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Meng Zhao
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| |
Collapse
|
7
|
Cheng H, Chen L, Hu X, Qiu H, Xu X, Gao L, Tang G, Zhang W, Wang J, Yang J, Huang C. Knockdown of MAML1 inhibits proliferation and induces apoptosis of T-cell acute lymphoblastic leukemia cells through SP1-dependent inactivation of TRIM59. J Cell Physiol 2019; 234:5186-5195. [PMID: 30370525 DOI: 10.1002/jcp.27323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 08/03/2018] [Indexed: 11/06/2022]
Abstract
Notch exerts important functions in cell proliferation, survival, and differentiation, which plays a critical role in tumor development when aberrantly activated. Mastermind-like protein 1 (MAML1) has been functioning as crucial coactivators of Notch receptors and is required for stable formation of Notch transcriptional complexes. However, the mechanism whereby MAML1 induces T-cell acute lymphoblastic leukemia (T-ALL) tumorigenesis is largely unknown. The CCK-8 and flow cytometry assay were performed to examine the effect of MAML1 knockdown on T-ALL cell proliferation, apoptosis, and cell cycle. The expression of MAML1, cell cycle, and apoptosis-related gene, as well as TRIM family members and specific protein 1 (SP1) was measured by western blot analysis and qPCR. Our results showed that MAML1 knockdown significantly inhibited cell proliferation and induced G0/G1 cell cycle arrest and apoptosis in Jurkat and MOLT-4 cells. Cell cycle and apoptosis-related gene expression, including CDK2, Bcl-2, Bax, and Bad, was modified by the MAML1 knockdown. MAML1 knockdown obviously inhibited the CDK2 and Bcl-2 expression and increased the Bax, p53, and Bad expression. Moreover, the TRIM family members, including TRIM13, TRIM32, TRIM44, and TRIM59, were significantly decreased by the MAML1 knockdown, with the highest decrease detected in TRIM59 expression. Interesting, overexpression of SP1 not only increased the expression of MAML1 and TRIM59, but also promoted the promoter activation of TRIM59. Taken together, knockdown of MAML1 inhibits proliferation and induces apoptosis of T-ALL cells through SP1-dependent inactivation of TRIM59, and therefore suggest that MAML1-SP1-TRIM59 axis may serve as potentially interesting therapeutic targets for treatment of T-ALL.
Collapse
Affiliation(s)
- Hui Cheng
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Chen
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxia Hu
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huiying Qiu
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoqian Xu
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Gao
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weiping Zhang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Wang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Yang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chongmei Huang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Bray SJ, Gomez-Lamarca M. Notch after cleavage. Curr Opin Cell Biol 2018; 51:103-109. [DOI: 10.1016/j.ceb.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
|
9
|
Philip S, Kumarasiri M, Teo T, Yu M, Wang S. Cyclin-Dependent Kinase 8: A New Hope in Targeted Cancer Therapy? J Med Chem 2018; 61:5073-5092. [PMID: 29266937 DOI: 10.1021/acs.jmedchem.7b00901] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays a vital role in regulating transcription either through its association with the Mediator complex or by phosphorylating transcription factors. Myriads of genetic and biochemical studies have established CDK8 as a key oncogenic driver in many cancers. Specifically, CDK8-mediated activation of oncogenic Wnt-β-catenin signaling, transcription of estrogen-inducible genes, and suppression of super enhancer-associated genes contributes to oncogenesis in colorectal, breast, and hematological malignancies, respectively. However, while most research supports the role of CDK8 as an oncogene, other work has raised the possibility of its contrary function. The diverse biological functions of CDK8 and its seemingly context-specific roles in different types of cancers have spurred a great amount of interest and perhaps an even greater amount of controversy in the development of CDK8 inhibitors as potential cancer therapeutic agents. Herein, we review the latest landscape of CDK8 biology and its involvement in carcinogenesis. We dissect current efforts in discovering CDK8 inhibitors and attempt to provide an outlook at the future of CDK8-targeted cancer therapies.
Collapse
Affiliation(s)
- Stephen Philip
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| | - Malika Kumarasiri
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| | - Theodosia Teo
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| |
Collapse
|