1
|
Cucchi DGJ, Groen RWJ, Janssen JJWM, Cloos J. Ex vivo cultures and drug testing of primary acute myeloid leukemia samples: Current techniques and implications for experimental design and outcome. Drug Resist Updat 2020; 53:100730. [PMID: 33096284 DOI: 10.1016/j.drup.2020.100730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
New treatment options of acute myeloid leukemia (AML) are rapidly emerging. Pre-clinical models such as ex vivo cultures are extensively used towards the development of novel drugs and to study synergistic drug combinations, as well as to discover biomarkers for both drug response and anti-cancer drug resistance. Although these approaches empower efficient investigation of multiple drugs in a multitude of primary AML samples, their translational value and reproducibility are hampered by the lack of standardized methodologies and by culture system-specific behavior of AML cells and chemotherapeutic drugs. Moreover, distinct research questions require specific methods which rely on specific technical knowledge and skills. To address these aspects, we herein review commonly used culture techniques in light of diverse research questions. In addition, culture-dependent effects on drug resistance towards commonly used drugs in the treatment of AML are summarized including several pitfalls that may arise because of culture technique artifacts. The primary aim of the current review is to provide practical guidelines for ex vivo primary AML culture experimental design.
Collapse
Affiliation(s)
- D G J Cucchi
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - R W J Groen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J J W M Janssen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Nalin AP, Kowalski JJ, Sprague AC, Schumacher BK, Gerhardt AG, Youssef Y, Vedantam KV, Zhang X, Siebel CW, Mace EM, Caligiuri MA, Mundy-Bosse BL, Freud AG. Notch Regulates Innate Lymphoid Cell Plasticity during Human NK Cell Development. THE JOURNAL OF IMMUNOLOGY 2020; 205:2679-2693. [PMID: 33020148 DOI: 10.4049/jimmunol.2000434] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
Human NK cells develop in tonsils through discrete NK cell developmental intermediates (NKDIs), yet the mechanistic regulation of this process is unclear. We demonstrate that Notch activation in human tonsil-derived stage 3 (CD34-CD117+CD94-NKp80-) and 4A (CD34-CD117+/-CD94+NKp80-) NKDIs promoted non-NK innate lymphoid cell differentiation at the expense of NK cell differentiation. In contrast, stage 4B (CD34-CD117+/-CD94+NKp80+) NKDIs were NK cell lineage committed despite Notch activation. Interestingly, whereas NK cell functional maturation from stage 3 and 4A NKDIs was independent of Notch activation, the latter was required for high NKp80 expression and a stage 4B-like phenotype by the NKDI-derived NK cells. The Notch-dependent effects required simultaneous engagement with OP9 stromal cells and were also stage-specific, with NOTCH1 and NOTCH2 receptors regulating stage 3 NKDIs and NOTCH1 primarily regulating stage 4A NKDIs. These data establish stage-specific and stromal-dependent roles for Notch in regulating human NK cell developmental plasticity and maturation.
Collapse
Affiliation(s)
- Ansel P Nalin
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210.,Medical Scientist Training Program, Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Jesse J Kowalski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | | | - Adam G Gerhardt
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Youssef Youssef
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Kiran V Vedantam
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Xiaoli Zhang
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210.,Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210
| | - Christian W Siebel
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080
| | - Emily M Mace
- Department of Pediatrics, Columbia University, New York, NY 10032
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Bethany L Mundy-Bosse
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Aharon G Freud
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; .,Department of Pathology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
3
|
Tavakol DN, Tratwal J, Bonini F, Genta M, Campos V, Burch P, Hoehnel S, Béduer A, Alessandrini M, Naveiras O, Braschler T. Injectable, scalable 3D tissue-engineered model of marrow hematopoiesis. Biomaterials 2019; 232:119665. [PMID: 31881380 DOI: 10.1016/j.biomaterials.2019.119665] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
Modeling the interaction between the supportive stroma and the hematopoietic stem and progenitor cells (HSPC) is of high interest in the regeneration of the bone marrow niche in blood disorders. In this work, we present an injectable co-culture system to study this interaction in a coherent in vitro culture and in vivo transplantation model. We assemble a 3D hematopoietic niche in vitro by co-culture of supportive OP9 mesenchymal cells and HSPCs in porous, chemically defined collagen-coated carboxymethylcellulose microscaffolds (CCMs). Flow cytometry and hematopoietic colony forming assays demonstrate the stromal supportive capacity for in vitro hematopoiesis in the absence of exogenous cytokines. After in vitro culture, we recover a paste-like living injectable niche biomaterial from CCM co-cultures by controlled, partial dehydration. Cell viability and the association between stroma and HSPCs are maintained in this process. After subcutaneous injection of this living artificial niche in vivo, we find maintenance of stromal and hematopoietic populations over 12 weeks in immunodeficient mice. Indeed, vascularization is enhanced in the presence of HSPCs. Our approach provides a minimalistic, scalable, biomimetic in vitro model of hematopoiesis in a microcarrier format that preserves the HSPC progenitor function, while being injectable in vivo without disrupting the cell-cell interactions established in vitro.
Collapse
Affiliation(s)
- Daniel Naveed Tavakol
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Genta
- Laboratory of Microsystems Engineering 4, EPFL, Lausanne, Switzerland
| | - Vasco Campos
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Patrick Burch
- Volumina-Medical SA, Route de la Corniche 5, CH-1066, Epalinges, Switzerland
| | - Sylke Hoehnel
- Sun Bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | - Amélie Béduer
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Volumina-Medical SA, Route de la Corniche 5, CH-1066, Epalinges, Switzerland
| | - Marco Alessandrini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Hematology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Hematology Service, Department of Laboratory Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Yu Z, Liu L, Shu Q, Li D, Wang R. Leukemia stem cells promote chemoresistance by inducing downregulation of lumican in mesenchymal stem cells. Oncol Lett 2019; 18:4317-4327. [PMID: 31579426 DOI: 10.3892/ol.2019.10767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Leukemia stem cells (LSCs) are responsible for therapeutic failure and relapse of acute lymphoblastic leukemia. As a result of the interplay between LSCs and bone marrow mesenchymal stem cells (BM-MSCs), cancer cells may escape from chemotherapy and immune surveillance, thereby promoting leukemia progress and relapse. The present study identified that the crosstalk between LSCs and BM-MSCs may contribute to changes of immune phenotypes and expression of hematopoietic factors in BM-MSCs. Furthermore, Illumina Genome Analyzer/Hiseq 2000 identified 7 differentially expressed genes between BM-MSCsLSC and BM-MSCs. The Illumina sequencing results were further validated by reverse transcription-quantitative polymerase chain reaction. Following LSC simulation, 2 genes were significantly upregulated, whereas the remaining 2 genes were significantly downregulated in MSCs. The most remarkable changes were identified in the expression levels of lumican (LUM) gene. These results were confirmed by western blot analysis. In addition, decreased LUM expression led to decreased apoptosis, and promoted chemoresistance to VP-16 in Nalm-6 cells. These results suggest that downregulation of LUM expression in BM-MSCs contribute to the anti-apoptotic properties and resistance to chemotherapy in LSCs.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Liu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiang Shu
- Department of Immunology, Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P.R. China
| | - Dong Li
- Department of Immunology, Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P.R. China
| | - Ran Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
5
|
Imai T, Tanaka H, Hamazaki Y, Minato N. Rap1 signal modulators control the maintenance of hematopoietic progenitors in bone marrow and adult long-term hematopoiesis. Cancer Sci 2019; 110:1317-1330. [PMID: 30767320 PMCID: PMC6447830 DOI: 10.1111/cas.13974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 01/22/2023] Open
Abstract
Adult long‐term hematopoiesis depends on sustaining hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) niches, where their balance of quiescence, self‐renewal, and hematopoietic differentiation is tightly regulated. Although various BM stroma cells that produce niche factors have been identified, regulation of the intrinsic responsiveness of HSPC to the niche factors remains elusive. We previously reported that mice deficient for Sipa1, a Rap1 GTPase‐activating protein, develop diverse hematopoietic disorders of late onset. Here we showed that transplantation of BM cells expressing membrane‐targeted C3G (C3G‐F), a Rap1 GTP/GDP exchanger, resulted in the progressive decline of the numbers of HSPC repopulated in BM with time and impaired long‐term hematopoiesis of all cell lineages. C3G‐F/HSPC were sustained for months in spleen retaining hematopoietic potential, but these cells inefficiently contributed to overall hematopoietic reconstitution. C3G‐F/HSPC showed enhanced proliferation and differentiation with accelerated progenitor cell exhaustion in response to stem cell factor (SCF). Using a Ba/F3 cell line, we confirmed that the increased basal Rap1GTP levels with C3G‐F expression caused a markedly prolonged activation of c‐Kit receptor and downstream signaling through SCF ligation. A minor population of C3G‐F/HSPC also showed enhanced proliferation in the presence of thrombopoietin (TPO) compared to Vect/HSPC. Current results suggest an important role of basal Rap1 activation status of HSPC in their maintenance in BM for sustaining long‐term adult hematopoiesis.
Collapse
Affiliation(s)
- Takahiko Imai
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Tanaka
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Hamazaki
- Center for iPS Research and Application, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Xu Y, Ikeda S, Sumida K, Yamamoto R, Tanaka H, Minato N. Sipa1 deficiency unleashes a host-immune mechanism eradicating chronic myelogenous leukemia-initiating cells. Nat Commun 2018; 9:914. [PMID: 29500416 PMCID: PMC5834470 DOI: 10.1038/s41467-018-03307-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic myelogenous leukemia (CML) caused by hematopoietic stem cells expressing the Bcr-Abl fusion gene may be controlled by Bcr-Abl tyrosine kinase inhibitors (TKIs). However, CML-initiating cells are resistant to TKIs and may persist as minimal residual disease. We demonstrate that mice deficient in Sipa1, which encodes Rap1 GTPase-activating protein, rarely develop CML upon transfer of primary hematopoietic progenitor cells (HPCs) expressing Bcr-Abl, which cause lethal CML disease in wild-type mice. Resistance requires both T cells and nonhematopoietic cells. Sipa1−/− mesenchymal stroma cells (MSCs) show enhanced activation and directed migration to Bcr-Abl+ cells in tumor tissue and preferentially produce Cxcl9, which in turn recruits Sipa1−/− memory T cells that have markedly augmented chemotactic activity. Thus, Sipa1 deficiency uncovers a host immune mechanism potentially capable of eradicating Bcr-Abl+ HPCs via coordinated interplay between MSCs and immune T cells, which may provide a clue for radical control of human CML. Chronic myelogenous leukemia (CML)-initiating cells are resistant to kinase inhibitors. Here the authors show that deficiency of the Rap1 GTPase-activating protein Sipa1 in the tumor microenvironment releases an immune response that eradicates CML-initiating cells via interplay between stromal and T cells.
Collapse
Affiliation(s)
- Yan Xu
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoshi Ikeda
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kentaro Sumida
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryusuke Yamamoto
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroki Tanaka
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan. .,DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|