1
|
Andrade SMM, Guignard Q, Smith SM, Allison JD. Confirmation that Monochamol is a Male Produced Aggregation-Sex Pheromone for Monochamus maculosus Haldeman (Coleoptera: Cerambycidae). J Chem Ecol 2024; 50:409-418. [PMID: 39088150 DOI: 10.1007/s10886-024-01530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The recognition of cerambycids as frequent and damaging invaders led to an increase in the interest in the chemical ecology of the group with the identification of pheromones and pheromone-like attractants for well over 100 species. Pheromone components of the Cerambycidae are often phylogenetically conserved, with a single compound serving as a pheromone component for several related species. In the subfamily Lamiinae, the compound 2-(undecyloxy)ethanol (monochamol) has been identified as an aggregation-sex pheromone for several species of the genus Monochamus. In other species, including Monochamus maculosus Haldeman, field trials have demonstrated that monochamol is a pheromone attractant, but at that point it was still unknown as to whether it was a pheromone for this species. Here we report the identification, and laboratory and field trials of a pheromone component produced by adult male M. maculosus. Chemical analyses of headspace volatile collections sampled from field collected beetles of both sexes revealed the presence of one male-specific compound that was identified as 2-(undecyloxy)ethanol. Electroantennography analyses showed that monochamol elicited responses from the antennae of female beetles. Traps baited with monochamol in the field captured M. maculosus adults of both sexes corroborating the identification of monochamol as the sex-aggregation pheromone of this species. The attractivity of monochamol to adult M. maculosus in our field trapping experiment was synergized by the addition of the host volatile α-pinene.
Collapse
Affiliation(s)
- Samara M M Andrade
- Canadian Forest Service, Natural Resources Canada - Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada.
- Institute of Forestry & Conservation, John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, Toronto, ON, Canada.
| | - Quentin Guignard
- Canadian Forest Service, Natural Resources Canada - Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- African Centre of Chemical Ecology, Innovation Africa at University of Pretoria, Pretoria, South Africa
| | - Sandy M Smith
- Institute of Forestry & Conservation, John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, Toronto, ON, Canada
| | - Jeremy D Allison
- Canadian Forest Service, Natural Resources Canada - Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada
- Institute of Forestry & Conservation, John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, Toronto, ON, Canada
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- African Centre of Chemical Ecology, Innovation Africa at University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Niu Y, Chi Y, Xu Y, Zhang S, Shi F, Zhao Y, Li M, Zong S, Tao J. Transcriptome analysis reveals the pheromone synthesis mechanism and mating response in Monochamus saltuarius (Coleoptera, Cerambycidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105975. [PMID: 39084766 DOI: 10.1016/j.pestbp.2024.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024]
Abstract
The pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer 1934) causes pine wilt disease, which severely affects the biodiversity and economy of Eurasian coniferous forests. Monochamus saltuarius (Coleoptera, Cerambycidae) was first identified as nematode vectors in Liaoning Province, China, in 2017. M. saltuarius has high mating efficiency and reproductive capabilities, pheromones are crucial in these processes. However, the mechanisms of pheromone synthesis in M. saltuarius are unclear. This study performed morphometric and transcriptomic analyses of the internal reproductive systems of males and females at different developmental stages and analyzed mate selection behavior. We found a significant difference in the morphology of internal reproductive systems between sexually immature and mature insects. A total of 58 and 64 pheromone biosynthesis genes were identified in females and males, respectively. The expression of the analyzed genes differed between males and females in the initial and subsequent synthesis processes. Interference experiment indicated that knocking down SDR1 gene in male M. saltuarius reduces the content of pheromones. Behavioral analyses found that males preferred virgin females. This study identified key pheromone genes and synthesis pathway that could serve as potential targets for disrupting mating in M. saltuarius through the development of novel biological agents using genetic engineering techniques.
Collapse
Affiliation(s)
- Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Ye Chi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Meng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Yasui H, Uechi N, Fujiwara-Tsujii N. Differences in Male Mate Recognition between the Invasive Anoplophora glabripennis (Coleoptera: Cerambycidae) and Japanese Native A. malasiaca. INSECTS 2023; 14:171. [PMID: 36835739 PMCID: PMC9960942 DOI: 10.3390/insects14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The Asian longicorn beetle Anoplophora glabripennis is a recently arrived invasive species to Japan. The Japanese native A. malasiaca shows an extensive overlap with A. glabripennis with host plants, niches, and emergence season. Hybridization between these two species is suspected in Japan. The surface of the female is covered with contact sex pheromones that elicit male mating behavior within species. We evaluated the contact pheromonal activity of crude extract and fractions of female A. glabripennis coated on a black glass model and revealed a hydrocarbon fraction and a blend of fractions to show activity but relatively weak, suggesting the presence of other unknown active compounds. Few male A. glabripennis showed mating behavior when they were exposed to a crude extract of female A. malasiaca. However, a considerable number of A. malasiaca males mounted and showed abdominal bending behavior when presented with glass models that were coated with each extract of female A. glabripennis and A. malasiaca. Gomadalactones are essential contact pheromone components that elicit mating behavior in male A. malasiaca; however, we could not detect them in female A. glabripennis extract. Here, we investigated the possible reasons for this phenomenon and the difference in male mate recognition systems between these two species.
Collapse
|
4
|
Mitchell RF, Doucet D, Bowman S, Bouwer MC, Allison JD. Prediction of a conserved pheromone receptor lineage from antennal transcriptomes of the pine sawyer genus Monochamus (Coleoptera: Cerambycidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:615-625. [PMID: 36242627 DOI: 10.1007/s00359-022-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 12/14/2022]
Abstract
Longhorned beetles (Cerambycidae) are a diverse family of wood-boring insects, many species of which produce volatile pheromones to attract mates over long distances. The composition and structure of the pheromones remain constant across many cerambycid species, and comparative studies of those groups could, therefore, reveal the chemoreceptors responsible for pheromone detection. Here, we use comparative transcriptomics to identify a candidate pheromone receptor in the large and economically important cerambycid genus Monochamus, males of which produce the aggregation-sex pheromone 2-(undecyloxy)-ethanol ("monochamol"). Antennal transcriptomes of the North American species M. maculosus, M. notatus, and M. scutellatus revealed 60-70 odorant receptors (ORs) in each species, including four lineages of simple orthologs that were highly conserved, highly expressed in both sexes, and upregulated in the flagellomeres where olfactory sensilla are localized. Two of these orthologous lineages, OR29 and OR59, remained highly expressed and conserved when we included a re-annotation of an antennal transcriptome of the Eurasian congener M. alternatus. OR29 is also orthologous to a characterized pheromone receptor in the cerambycid Megacyllene caryae, suggesting it as the most likely candidate for a monochamol receptor and highlighting its potential as a conserved lineage of pheromone receptors within one of the largest families of beetles.
Collapse
Affiliation(s)
- Robert F Mitchell
- Department of Biology, University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, WI, 54901, USA.
| | - Daniel Doucet
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, P6A2E5, Canada
| | - Susan Bowman
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, P6A2E5, Canada
| | - Marc C Bouwer
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, P6A2E5, Canada
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Jeremy D Allison
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, P6A2E5, Canada
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Silva WD, Zou Y, Hanks LM, Bento JMS, Millar JG. A Novel Trisubstituted Tetrahydropyran as a Possible Pheromone Component for the South American Cerambycid Beetle Macropophora accentifer. J Chem Ecol 2022; 48:569-582. [PMID: 35501536 DOI: 10.1007/s10886-022-01362-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
A novel trisubstituted tetrahydropyran was isolated and identified from the sex-specific volatiles produced by males of the cerambycid beetle Macropophora accentifer (Olivier), a serious pest of citrus and other fruit crops in South America. The compound was the major component in the headspace volatiles, and it was synthesized in racemic form. However, in field trials, the racemate was only weakly attractive to beetles of both sexes, suggesting that attraction might be inhibited by the presence of the "unnatural" enantiomer in the racemate. Alternatively, the male-produced volatiles contained a number of minor and trace components, including a compound tentatively identified as a homolog of the major component, as well as a number of unsaturated 8-carbon alcohols and aldehydes. Further work is required to conclusively identify and synthesize these minor components, to determine whether one or more of them are crucial components of the active pheromone blend for this species.
Collapse
Affiliation(s)
- Weliton D Silva
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, SP, 13418900, Brazil
| | - Yunfan Zou
- Departments of Entomology and Chemistry, University of California, Riverside, CA, 92521, USA
| | - Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - José Maurício S Bento
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, SP, 13418900, Brazil
| | - Jocelyn G Millar
- Departments of Entomology and Chemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Wang X, Keena MA. Hybridization Potential of Two Invasive Asian Longhorn Beetles. INSECTS 2021; 12:1139. [PMID: 34940227 PMCID: PMC8706446 DOI: 10.3390/insects12121139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
The Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) and citrus longhorned beetle (CLB), Anoplophora chinensis (Förster) (both Coleoptera: Cerambycidae: Lamiinae), are high-risk invasive pests that attack various healthy hardwood trees. These two species share some similar host plants and overlapping distributions in large parts of their native ranges in China and the Korean peninsula as well as similar reproductive behaviors. The original Anoplophora malasiaca (Thomson) occurs in Japan and has been synonymized as CLB (hereafter referred to JCLB). In this study, a 30-min behavioral observation of paired adults, followed by a four-week exposure to host bolts, showed that ALB could not successfully cross with CLB. Mating was observed between female CLB and male ALB but not between female ALB and male CLB, no laid eggs hatched. JCLB males successfully crossed with ALB females to produce viable eggs although the overall percentage of hatched eggs was lower than those from conspecific mating pairs. However, ALB males could not successfully cross with JCLB females. CLB and JCLB mated and produced viable hybrid offspring and the hybrid F1 offspring eggs were fertile. These results suggest an asymmetrical hybridization between ALB and JCLB, and that both CLB and JCLB might be considered as two subspecies with different hybridization potential with congeneric ALB. Given their potential impacts on ecosystems and many economically important tree hosts, invasion of these geographically isolated species (ALB and JCLB) or distant subspecies (CLB and JCLB) into the same region may facilitate potential hybridization, which could be a potential concern for the management of these two globally important invasive forest pests. Further studies are needed to determine if fertile hybrid offspring are capable of breeding continually or backcrossing with parental offspring successfully.
Collapse
Affiliation(s)
- Xingeng Wang
- United States Department of Agriculture, Agricultural Research Service, Beneficial Insects Introduction Research Unit, Newark, DE 19713, USA
| | - Melody A. Keena
- United States Department of Agriculture, Forest Service, Northern Research Station, Hamden, CT 06514, USA;
| |
Collapse
|
7
|
Demidko DA, Demidko NN, Mikhaylov PV, Sultson SM. Biological Strategies of Invasive Bark Beetles and Borers Species. INSECTS 2021; 12:insects12040367. [PMID: 33924117 PMCID: PMC8074309 DOI: 10.3390/insects12040367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Biological invasions are one of the most critical problems today. Invaders have been damaging tree- and shrub-dominated ecosystems. Among these harmful species, a notable role belongs to bark beetles and borers. Extensive phytosanitary measures are needed to prevent their penetration into new regions. However, the lists of quarantine pests should be reasonably brief for more effective prevention of invasion of potentially harmful insects. Our goal is to reveal the set of biological traits of invasive bark beetles and borers that are currently known. We identified four invasion strategies. Inbred, the first one is characterized by inbreeding, parthenogenesis, polyvoltinism, xylomycetophagy, flightless males, polyphagy, to less extent by association with pathogenic fungi. For the second, polyphagous, typical traits are polyphagy, feeding on wood, high fecundity, distance sex pheromones presence, development for one year or more. The third strategy, intermediate, possesses such features as mono- or olygophagy, feeding on inner-bark, short (one year or less) life cycle. Aggressive, the last one includes monophagous species using aggregation pheromones, associated pathogens, short life cycle, and consuming inner-bark. The main traits contributing to significant damage are high fecundity, polyvoltinism, symbiotic plant pathogens, long-range or aggregation pheromones. Abstract The present study attempts to identify the biological characteristics of invasive (high-impact in the secondary area) bark beetles and borers species, contributing to their success in an invaded area. We selected 42 species based on the CABI website data on invasive species and information on the most studied regional faunas. Four groups of species with different invasion strategies were identified based on the cluster and factor analysis. The first one (inbred strategy) is characterized by flightless males, xylomycetophagy, low fecundity (~50 eggs), inbreeding, polyvoltinism, and polyphagy. Species with an aggressive strategy are poly- or monovoltine, feeds on a limited number of hosts, larval feeding on the inner bark, are often associated with phytopathogens, and produce aggregation pheromones. Representatives of the polyphagous strategy have a wide range of hosts, high fecundity (~150 eggs), larval feeding on wood, and their life cycle is at least a year long. For the intermediate strategy, the typical life cycle is from a year or less, medium fecundity, feed on inner bark tissues, mono- or oligophagy. Comparison with low-impact alien species showed that the most significant traits from the viewpoint of the potential danger of native plant species are high fecundity, polyvoltinism, presence of symbiotic plant pathogens, long-range or aggregation pheromones.
Collapse
Affiliation(s)
- Denis A. Demidko
- Sukachev Institute of Forest, Siberian Branch, Russian Academy of Science, 50, bil. 28, Akademgorodok, 660036 Krasnoyarsk, Russia
- Scientific Laboratory of Forest Health, Reshetnev Siberian State University of Science and Technology, Krasnoyarskii Rabochii Prospekt. 31, 660037 Krasnoyarsk, Russia;
- Correspondence: (D.A.D.); (P.V.M.)
| | - Natalia N. Demidko
- Department of Medical and Biological Basics of Physical Education and Health Technologies, School of Physical Education, Sport and Tourism, Siberian Federal University, Svobodny ave. 79, 660041 Krasnoyarsk, Russia;
| | - Pavel V. Mikhaylov
- Scientific Laboratory of Forest Health, Reshetnev Siberian State University of Science and Technology, Krasnoyarskii Rabochii Prospekt. 31, 660037 Krasnoyarsk, Russia;
- Correspondence: (D.A.D.); (P.V.M.)
| | - Svetlana M. Sultson
- Scientific Laboratory of Forest Health, Reshetnev Siberian State University of Science and Technology, Krasnoyarskii Rabochii Prospekt. 31, 660037 Krasnoyarsk, Russia;
| |
Collapse
|
8
|
Deyrup ST, Stagnitti NC, Perpetua MJ, Wong-Deyrup SW. Drug Discovery Insights from Medicinal Beetles in Traditional Chinese Medicine. Biomol Ther (Seoul) 2021; 29:105-126. [PMID: 33632986 PMCID: PMC7921859 DOI: 10.4062/biomolther.2020.229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional Chinese medicine (TCM) was the primary source of medical treatment for the people inhabiting East Asia for thousands of years. These ancient practices have incorporated a wide variety of materia medica including plants, animals and minerals. As modern sciences, including natural products chemistry, emerged, there became increasing efforts to explore the chemistry of this materia medica to find molecules responsible for their traditional use. Insects, including beetles have played an important role in TCM. In our survey of texts and review articles on TCM materia medica, we found 48 species of beetles from 34 genera in 14 different families that are used in TCM. This review covers the chemistry known from the beetles used in TCM, or in cases where a species used in these practices has not been chemically studied, we discuss the chemistry of closely related beetles. We also found several documented uses of beetles in Traditional Korean Medicine (TKM), and included them where appropriate. There are 129 chemical constituents of beetles discussed.
Collapse
Affiliation(s)
- Stephen T. Deyrup
- Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12309, USA
| | - Natalie C. Stagnitti
- Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12309, USA
| | | | - Siu Wah Wong-Deyrup
- The RNA Institute and Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
9
|
Pheromone Chemistry of the Citrus Borer, Diploschema rotundicolle (Coleoptera: Cerambycidae). J Chem Ecol 2020; 46:809-819. [PMID: 32761298 DOI: 10.1007/s10886-020-01203-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/04/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
The citrus borer, Diploschema rotundicolle, is a Neotropical longhorn beetle that has become a serious citrus pest in southern South America. Management strategies for this insect rely on trimming off damaged shoots, which is expensive and inefficient. We studied the chemical communication system in D. rotundicolle in search of attractants for monitoring or control. GC-MS and enantioselective GC analyses of volatile extracts from field-collected adults showed that males produce (R)-3-hydroxy-2-hexanone, irregularly accompanied by minor amounts of 2,3-hexanediol (all four stereoisomers) and 2,3-hexanedione. Males emit the compounds only at night, when the adults are active. GC-EAD analyses of natural and synthetic compounds showed that both male and female antennae respond to the natural enantiomer (R)-3-hydroxy-2-hexanone, suggesting that it may function as an aggregation-sex pheromone as seen in many cerambycines. The non-natural (S) enantiomer as well as the minor component 2,3-hexanediol did not trigger antennal responses. Field tests with the racemic 3-hydroxy-2-hexanone, enantiomerically pure (R)-3-hydroxy-2-hexanone, as well as a mixture of racemic 3-hydroxy-2-hexanone and 2,3-hexanediol, showed in all cases low capture levels of D. rotundicolle. However, increasing the elevation of the trap and the emission rate of dispensers enhanced field captures in traps baited with racemic hydroxyketone. Incidental catches of another native cerambycine, Retrachydes thoracicus, in traps baited with 3-hydroxy-2-hexanone are also reported. This is the first report of pheromone chemistry in the genus Diploschema and in the tribe Torneutini, reaffirming the pheromone parsimony well established for the Cerambycinae. Potential factors explaining the weak attraction of D. rotundicolle in the field are discussed.
Collapse
|
10
|
Sun L, Zhang YN, Qian JL, Kang K, Zhang XQ, Deng JD, Tang YP, Chen C, Hansen L, Xu T, Zhang QH, Zhang LW. Identification and Expression Patterns of Anoplophora chinensis (Forster) Chemosensory Receptor Genes from the Antennal Transcriptome. Front Physiol 2018; 9:90. [PMID: 29497384 PMCID: PMC5819563 DOI: 10.3389/fphys.2018.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/26/2018] [Indexed: 11/25/2022] Open
Abstract
The citrus long-horned beetle (CLB), Anoplophora chinensis (Forster) is a destructive native pest in China. Chemosensory receptors including odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs) function to interface the insect with its chemical environment. In the current study, we assembled the antennal transcriptome of A. chinensis by next-generation sequencing. We assembled 44,938 unigenes from 64,787,784 clean reads and annotated their putative gene functions based on gene ontology (GO) and Clusters of Orthologous Groups of proteins (COG). Overall, 74 putative receptor genes from chemosensory receptor gene families, including 53 ORs, 17 GRs, and 4 IRs were identified. Expression patterns of these receptors on the antennae, maxillary and labial palps, and remaining body segments of both male and female A. chinensis were performed using quantitative real time-PCR (RT-qPCR). The results revealed that 23 ORs, 6 GRs, and 1 IR showed male-biased expression profiles, suggesting that they may play a significant role in sensing female-produced sex pheromones; whereas 8 ORs, 5 GRs, and 1 IR showed female-biased expression profiles, indicating that these receptors may be involved in some female-specific behaviors such as oviposition site seeking. These results lay a solid foundation for deeply understanding CLB olfactory processing mechanisms. Moreover, by comparing our results with those from chemosensory receptor studies in other cerambycid species, several highly probable pheromone receptor candidates were highlighted, which may facilitate the identification of additional pheromone and/or host attractants in CLB.
Collapse
Affiliation(s)
- Long Sun
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jia-Li Qian
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ke Kang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
- Forest Diseases and Insect Pests Control and Quarantine Station of Chaohu City, Chaohu, China
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jun-Dan Deng
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan-Ping Tang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Cheng Chen
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Laura Hansen
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Tian Xu
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, WA, United States
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Žunič Kosi A, Zou Y, Hoskovec M, Vrezec A, Stritih N, Millar JG. Novel, male-produced aggregation pheromone of the cerambycid beetle Rosalia alpina, a priority species of European conservation concern. PLoS One 2017; 12:e0183279. [PMID: 28827817 PMCID: PMC5565183 DOI: 10.1371/journal.pone.0183279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
Several recent studies have demonstrated the great potential for exploiting semiochemicals in ecology and conservation studies. The cerambycid beetle Rosalia alpina represents one of the flagship species of saproxylic insect biodiversity in Europe. In recent years its populations appear to have declined substantially, and its range has shrunk considerably as a result of forest management and urbanization. Here, we collected volatile chemicals released by males and females of R. alpina. Analyses of the resulting extracts revealed the presence of a single male-specific compound, identified as a novel alkylated pyrone structure. In field bioassays in Slovenia, traps baited with the synthesized pyrone captured both sexes of R. alpina, indicating that the pyrone functions as an aggregation pheromone. Our results represent the first example of a new structural class of pheromones within the Cerambycidae, and demonstrate that pheromone-baited traps can provide a useful tool for sampling R. alpina. This tool could be particularly useful in the ongoing development of conservation strategies for the iconic but endangered Alpine longicorn.
Collapse
Affiliation(s)
- Alenka Žunič Kosi
- National Institute of Biology, Department of Organisms and Ecosystem Research, Ljubljana, Slovenia
| | - Yunfan Zou
- University of California, Department of Entomology, Riverside, California, United States of America
| | - Michal Hoskovec
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| | - Al Vrezec
- National Institute of Biology, Department of Organisms and Ecosystem Research, Ljubljana, Slovenia
| | - Nataša Stritih
- National Institute of Biology, Department of Organisms and Ecosystem Research, Ljubljana, Slovenia
| | - Jocelyn G Millar
- University of California, Department of Entomology, Riverside, California, United States of America
| |
Collapse
|
12
|
Synergism between Enantiomers Creates Species-Specific Pheromone Blends and Minimizes Cross-Attraction for Two Species of Cerambycid Beetles. J Chem Ecol 2016; 42:1181-1192. [PMID: 27771798 DOI: 10.1007/s10886-016-0782-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/25/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Research over the last decade has revealed extensive parsimony among pheromones within the large insect family Cerambycidae, with males of many species producing the same, or very similar aggregation pheromones. Among some species in the subfamily Cerambycinae, interspecific attraction is minimized by temporal segregation, and/or by minor pheromone components that synergize attraction of conspecifics or inhibit attraction of heterospecifics. Less is known about pheromone-based mechanisms of reproductive isolation among species in the largest subfamily, the Lamiinae. Here, we present evidence that the pheromone systems of two sympatric lamiine species consist of synergistic blends of enantiomers of (E)-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol) and the structurally related (E)-6,10-dimethyl-5,9-undecadien-2-yl acetate (fuscumol acetate), as a mechanism by which species-specific blends of pheromone components can minimize interspecific attraction. Male Astylidius parvus (LeConte) were found to produce (R)- and (S)-fuscumol + (R)-fuscumol acetate + geranylacetone, whereas males of Lepturges angulatus (LeConte) produced (R)- and (S)-fuscumol acetate + geranylacetone. Field experiments confirmed that adult beetles were attracted only by their species-specific blend of the enantiomers of fuscumol and fuscumol acetate, respectively, and not to the individual enantiomers. Because other lamiine species are known to produce single enantiomers or blends of enantiomers of fuscumol and/or fuscumol acetate, synergism between enantiomers, or inhibition by enantiomers, may be a widespread mechanism for forming species-specific pheromone blends in this subfamily.
Collapse
|
13
|
Hughes GP, Meier LR, Zou Y, Millar JG, Hanks LM, Ginzel MD. Stereochemistry of Fuscumol and Fuscumol Acetate Influences Attraction of Longhorned Beetles (Coleoptera: Cerambycidae) of the Subfamily Lamiinae. ENVIRONMENTAL ENTOMOLOGY 2016; 45:1271-1275. [PMID: 27523086 DOI: 10.1093/ee/nvw101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
The chemical structures of aggregation-sex pheromones of longhorned beetles (Coleoptera: Cerambycidae) are often conserved among closely related taxa. In the subfamily Lamiinae, adult males and females of several species are attracted by racemic blends of (E)-6,10-dimethyl-5,9-undecadien-2-ol (termed fuscumol) and the structurally related (E)-6,10-dimethyl-5,9-undecadien-2-yl acetate (fuscumol acetate). Both compounds have a chiral center, so each can exist in two enantiomeric forms. Males of many species of longhorned beetles only produce one stereoisomer of each pheromone component, and attraction may be reduced by the presence of stereoisomers that are not produced by a particular species. In a previous publication, analysis of headspace volatiles of adult beetles of the lamiine species Astyleiopus variegatus (Haldeman) revealed that males sex-specifically produced (S)-fuscumol and (S)-fuscumol acetate. Here, we describe field trials which tested attraction of this species to single enantiomers of fuscumol and fuscumol acetate, or to blends of enantiomers. We confirmed attraction of A. variegatus to its species-specific blend, but during the course of the trials, found that several other species also were attracted. These included Aegomorphus modestus (Gyllenhall), attracted to (S)-fuscumol acetate; Astylidius parvus (LeConte), attracted to (R)-fuscumol; Astylopsis macula (Say), attracted to (S)-fuscumol; and Graphisurus fasciatus (DeGeer), attracted to a blend of (R)-fuscumol and (R)-fuscumol acetate. These results suggest that chirality may be important in the pheromone chemistry of lamiines, and that specific stereoisomers or mixtures of stereoisomers are likely produced by each species.
Collapse
Affiliation(s)
- G P Hughes
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907 (; )
| | - L R Meier
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (; )
| | - Y Zou
- Department of Entomology, University of California, Riverside, Riverside, CA 92521 (; )
| | - J G Millar
- Department of Entomology, University of California, Riverside, Riverside, CA 92521 (; )
| | - L M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (; )
| | - M D Ginzel
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907 (; )
| |
Collapse
|
14
|
Hanks LM, Millar JG. Sex and Aggregation-Sex Pheromones of Cerambycid Beetles: Basic Science and Practical Applications. J Chem Ecol 2016; 42:631-54. [PMID: 27501814 DOI: 10.1007/s10886-016-0733-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/25/2016] [Accepted: 07/21/2016] [Indexed: 11/25/2022]
Abstract
Research since 2004 has shown that the use of volatile attractants and pheromones is widespread in the large beetle family Cerambycidae, with pheromones now identified from more than 100 species, and likely pheromones for many more. The pheromones identified to date from species in the subfamilies Cerambycinae, Spondylidinae, and Lamiinae are all male-produced aggregation-sex pheromones that attract both sexes, whereas all known examples for species in the subfamilies Prioninae and Lepturinae are female-produced sex pheromones that attract only males. Here, we summarize the chemistry of the known pheromones, and the optimal methods for their collection, analysis, and synthesis. Attraction of cerambycids to host plant volatiles, interactions between their pheromones and host plant volatiles, and the implications of pheromone chemistry for invasion biology are discussed. We also describe optimized traps, lures, and operational parameters for practical applications of the pheromones in detection, sampling, and management of cerambycids.
Collapse
Affiliation(s)
- Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jocelyn G Millar
- Departments of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
15
|
Host plant affects the sexual attractiveness of the female white-spotted longicorn beetle, Anoplophora malasiaca. Sci Rep 2016; 6:29526. [PMID: 27412452 PMCID: PMC4944169 DOI: 10.1038/srep29526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/14/2016] [Indexed: 11/15/2022] Open
Abstract
Anoplophora malasiaca (Coleoptera: Cerambycidae) is a serious pest that destroys various landscape and crop trees in Japan. We evaluated the precopulatory responses of three different A. malasiaca populations collected from mandarin orange, willow and blueberry trees. Most of the males accepted mates from within the same host plant population as well as females from the willow and blueberry populations. However, significant number of males from the blueberry and willow populations rejected females from the mandarin orange population immediately after touching them with their antennae. Because all three of the female populations produced contact sex pheromones on their elytra, the females of the mandarin orange population were predicted to possess extra chemicals that repelled the males of the other two populations. β-Elemene was identified as a key component that was only found in mandarin orange-fed females and induced a rejection response in willow-fed males. Our results represent the first example of a female-acquired repellent against conspecific males of different host plant populations, indicating that the host plant greatly affects the female’s sexual attractiveness.
Collapse
|
16
|
Correction: Identification of a Male-Produced Pheromone Component of the Citrus Longhorned Beetle, Anoplophora chinensis. PLoS One 2015; 10:e0145355. [PMID: 26672605 PMCID: PMC4682733 DOI: 10.1371/journal.pone.0145355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Li W, Yang X, Qian L, An Y, Fang J. The complete mitochondrial genome of the citrus long-horned beetle, Anoplophora chinensis (Coleoptera: Cerambycidae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4665-4667. [PMID: 26643058 DOI: 10.3109/19401736.2015.1106493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this paper, the complete mitochondrial genome of Anoplophora chinensis is sequenced and reported for the first time. The mitochondrial genome is a circular molecule of 15 805 bp, 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region. Nine protein-coding genes and 14 tRNA genes are encoded on the H strand, and the other four protein-coding genes and eight tRNA genes are encoded on the L strand. The arrangement of genes is identical to all know long-horn beetles mitochondrial genomes. The nucleotide composition of the A. chinensis mitogenome is strongly biased toward A + T nucleotides (77.65%). Finally, the phylogenetic relationships of 12 Lamiinae species were reconstructed based on nucleotide sequences of COI using the Bayesian inference method. These molecular-based phylogenies support the traditional morphologically based view of relationships within the Lamiinae.
Collapse
Affiliation(s)
- Wenbo Li
- a School of Life Sciences, Anhui University , Hefei , Anhui , China and
| | - Xiaojun Yang
- b Plant Quarantine Laboratory of Jiangsu Entry-Exit Inspection and Quarantine Bureau of China , Nanjing , China
| | - Lu Qian
- b Plant Quarantine Laboratory of Jiangsu Entry-Exit Inspection and Quarantine Bureau of China , Nanjing , China
| | - Yulin An
- b Plant Quarantine Laboratory of Jiangsu Entry-Exit Inspection and Quarantine Bureau of China , Nanjing , China
| | - Jie Fang
- a School of Life Sciences, Anhui University , Hefei , Anhui , China and
| |
Collapse
|