1
|
Abstract
Neurological insults, such as congenital blindness, deafness, amputation, and stroke, often result in surprising and impressive behavioural changes. Cortical reorganisation, which refers to preserved brain tissue taking on a new functional role, is often invoked to account for these behavioural changes. Here, we revisit many of the classical animal and patient cortical remapping studies that spawned this notion of reorganisation. We highlight empirical, methodological, and conceptual problems that call this notion into doubt. We argue that appeal to the idea of reorganisation is attributable in part to the way that cortical maps are empirically derived. Specifically, cortical maps are often defined based on oversimplified assumptions of 'winner-takes-all', which in turn leads to an erroneous interpretation of what it means when these maps appear to change. Conceptually, remapping is interpreted as a circuit receiving novel input and processing it in a way unrelated to its original function. This implies that neurons are either pluripotent enough to change what they are tuned to or that a circuit can change what it computes. Instead of reorganisation, we argue that remapping is more likely to occur due to potentiation of pre-existing architecture that already has the requisite representational and computational capacity pre-injury. This architecture can be facilitated via Hebbian and homeostatic plasticity mechanisms. Crucially, our revised framework proposes that opportunities for functional change are constrained throughout the lifespan by the underlying structural 'blueprint'. At no period, including early in development, does the cortex offer structural opportunities for functional pluripotency. We conclude that reorganisation as a distinct form of cortical plasticity, ubiquitously evoked with words such as 'take-over'' and 'rewiring', does not exist.
Collapse
Affiliation(s)
- Tamar R Makin
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - John W Krakauer
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Santa Fe InstituteSanta FeUnited States
| |
Collapse
|
2
|
Berger JI, Gander PE, Kikuchi Y, Petkov CI, Kumar S, Kovach C, Oya H, Kawasaki H, Howard MA, Griffiths TD. Distribution of multiunit pitch responses recorded intracranially from human auditory cortex. Cereb Cortex 2023:7180374. [PMID: 37246155 DOI: 10.1093/cercor/bhad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023] Open
Abstract
The perception of pitch is a fundamental percept, which is mediated by the auditory system, requiring the abstraction of stimulus properties related to the spectro-temporal structure of sound. Despite its importance, there is still debate as to the precise areas responsible for its encoding, which may be due to species differences or differences in the recording measures and choices of stimuli used in previous studies. Moreover, it was unknown whether the human brain contains pitch neurons and how distributed such neurons might be. Here, we present the first study to measure multiunit neural activity in response to pitch stimuli in the auditory cortex of intracranially implanted humans. The stimulus sets were regular-interval noise with a pitch strength that is related to the temporal regularity and a pitch value determined by the repetition rate and harmonic complexes. Specifically, we demonstrate reliable responses to these different pitch-inducing paradigms that are distributed throughout Heschl's gyrus, rather than being localized to a particular region, and this finding was evident regardless of the stimulus presented. These data provide a bridge across animal and human studies and aid our understanding of the processing of a critical percept associated with acoustic stimuli.
Collapse
Affiliation(s)
- Joel I Berger
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Phillip E Gander
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Yukiko Kikuchi
- Biosciences Institute, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Christopher I Petkov
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
- Biosciences Institute, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Sukhbinder Kumar
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Christopher Kovach
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Hiroyuki Oya
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew A Howard
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
3
|
Czekóová K, Shaw DJ, Lamoš M, Špiláková BH, Salazar M, Roman R, Brázdil M. A high-density EEG investigation into the neurocognitive mechanisms underlying differences between personality profiles in social information processing. Scand J Psychol 2022; 63:484-494. [PMID: 35524466 DOI: 10.1111/sjop.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
This study investigated whether differences between personality styles in the processing of social stimuli reflect variability in underlying general-purpose or social-specific neurocognitive mechanisms. Sixty-five individuals classified previously into two distinct personality profiles underwent high-density electroencephalography whilst performing tasks that tap into both aspects of cognitive processing - namely, two distinct facets of general-purpose response inhibition (interference resolution and action withholding) during social information processing. To determine the stage of processing at which personality differences manifest, we assessed event-related components associated with the early visual discrimination of social stimuli (N170, N190) and later more general conflict-related processes (N2, P3). Although a performance index of interference resolution was comparable between the personality profiles, differences were detected in action withholding. Specifically, individuals expressing a wider repertoire of personality styles and more adaptive emotion regulation performed significantly better at withholding inappropriate actions to neutral faces presented in emotional contexts compared with those exhibiting stronger preferences for fewer and less adaptive personality styles and more ruminative affective tendencies. At the neurophysiological level, however, difference between the profiles was observed in brain responses elicited to the same stimuli within the N170. These results indicate that neural processes related to early visual discrimination might contribute to differences in the suppression of inappropriate responses towards social stimuli in populations with different personality dispositions.
Collapse
Affiliation(s)
- Kristína Czekóová
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.,Institue of Psychology, Czech Academy of Sciences, Brno, Czechia
| | - Daniel Joel Shaw
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.,School of Psychology, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Martin Lamoš
- Multimodal and Functional Neuroimaging, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Beáta Havlice Špiláková
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Miguel Salazar
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Robert Roman
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Milan Brázdil
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.,First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
4
|
Siskos N, Ververidis C, Skavdis G, Grigoriou ME. Genoarchitectonic Compartmentalization of the Embryonic Telencephalon: Insights From the Domestic Cat. Front Neuroanat 2022; 15:785541. [PMID: 34975420 PMCID: PMC8716433 DOI: 10.3389/fnana.2021.785541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The telencephalon develops from the alar plate of the secondary prosencephalon and is subdivided into two distinct divisions, the pallium, which derives solely from prosomere hp1, and the subpallium which derives from both hp1 and hp2 prosomeres. In this first systematic analysis of the feline telencephalon genoarchitecture, we apply the prosomeric model to compare the expression of a battery of genes, including Tbr1, Tbr2, Pax6, Mash1, Dlx2, Nkx2-1, Lhx6, Lhx7, Lhx2, and Emx1, the orthologs of which alone or in combination, demarcate molecularly distinct territories in other species. We characterize, within the pallium and the subpallium, domains and subdomains topologically equivalent to those previously described in other vertebrate species and we show that the overall genoarchitectural map of the E26/27 feline brain is highly similar to that of the E13.5/E14 mouse. In addition, using the same approach at the earlier (E22/23 and E24/25) or later (E28/29 and E34/35) stages we further analyze neurogenesis, define the timing and duration of several developmental events, and compare our data with those from similar mouse studies; our results point to a complex pattern of heterochronies and show that, compared with the mouse, developmental events in the feline telencephalon span over extended periods suggesting that cats may provide a useful animal model to study brain patterning in ontogenesis and evolution.
Collapse
Affiliation(s)
- Nikistratos Siskos
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Ververidis
- Obstetrics and Surgery Unit, Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria E Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
5
|
Levine AT, Li B, Barnes P, Lomber SG, Butler BE. Assessment of anesthesia on physiological stability and BOLD signal reliability during visual or acoustic stimulation in the cat. J Neurosci Methods 2020; 334:108603. [PMID: 31982459 DOI: 10.1016/j.jneumeth.2020.108603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroimaging methods including fMRI provide powerful tools to observe whole-brain functional networks. This is particularly powerful in animal models, allowing these networks to be probed using complementary methods. However, most animals must be anesthetized for neuroimaging, giving rise to complications resulting from anesthetic effects on the animal's physiological and neurological functions. For example, an established protocol for feline neuroimaging involves co-administration of ketamine and isoflurane - the latter of which is known to suppress cortical function. NEW METHOD Here, we compare this established protocol to alfaxalone, a single-agent anesthetic for functional neuroimaging. We first compare the two in a controlled environment to assess relative safety and to measure physiological stability over an extended time window. We then compare patterns of auditory and visually-evoked activity measured at 7 T to assess mean signal strength and between-subjects signal variability. RESULTS IN COMPARISON WITH EXISTING METHODS We show that alfaxalone results in more stable respiratory rates over the 120 min testing period, with evidence of smaller between-measurements variability within this time window, when compared to ketamine plus isoflurane. Moreover, we demonstrate that both agents evoke similar mean BOLD signals across animals, but that alfaxalone elicits more consistent BOLD activity in response to sound stimuli across all ROIs observed. CONCLUSIONS Alfaxalone is observed to be more physiologically stable, evoking a more consistent BOLD signal across animals than the co-administration of ketamine and isoflurane. Thus, an alfaxalone-based protocol may represent a better approach for neuroimaging in animal models requiring anesthesia.
Collapse
Affiliation(s)
- Alexandra T Levine
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Benson Li
- Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada
| | - Paisley Barnes
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Stephen G Lomber
- Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada; Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 3K7, Canada; National Centre for Audiology, University of Western Ontario, London, Ontario, N6G 1H1, Canada
| | - Blake E Butler
- Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 3K7, Canada; National Centre for Audiology, University of Western Ontario, London, Ontario, N6G 1H1, Canada.
| |
Collapse
|
6
|
Yang B, Wong E, Ho WH, Lau C, Chan YS, Wu EX. Reduction of sound-evoked midbrain responses observed by functional magnetic resonance imaging following acute acoustic noise exposure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2184. [PMID: 29716239 DOI: 10.1121/1.5030920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Short duration and high intensity acoustic exposures can lead to temporary hearing loss and auditory nerve degeneration. This study investigates central auditory system function following such acute exposures after hearing loss recedes. Adult rats were exposed to 100 dB sound pressure level noise for 15 min. Auditory brainstem responses (ABRs) were recorded with click sounds to check hearing thresholds. Functional magnetic resonance imaging (fMRI) was performed with tonal stimulation at 12 and 20 kHz to investigate central auditory changes. Measurements were performed before exposure (0D), 7 days after (7D), and 14 days after (14D). ABRs show an ∼6 dB threshold shift shortly after exposure, but no significant threshold differences between 0D, 7D, and 14D. fMRI responses are observed in the lateral lemniscus (LL) and inferior colliculus (IC) of the midbrain. In the IC, responses to 12 kHz are 3.1 ± 0.3% (0D), 1.9 ± 0.3% (7D), and 2.9 ± 0.3% (14D) above the baseline magnetic resonance imaging signal. Responses to 20 kHz are 2.0 ± 0.2% (0D), 1.4 ± 0.2% (7D), and 2.1 ± 0.2% (14D). For both tones, responses at 7D are less than those at 0D (p < 0.01) and 14D (p < 0.05). In the LL, similar trends are observed. Acute exposure leads to functional changes in the auditory midbrain with timescale of weeks.
Collapse
Affiliation(s)
- Bin Yang
- Department of Physics, The City University of Hong Kong, Hong Kong, People's Republic of China
| | - Eddie Wong
- Department of Physics, The City University of Hong Kong, Hong Kong, People's Republic of China
| | - Wai Hong Ho
- Department of Physics, The City University of Hong Kong, Hong Kong, People's Republic of China
| | - Condon Lau
- Department of Physics, The City University of Hong Kong, Hong Kong, People's Republic of China
| | - Ying Shing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
7
|
Stolzberg D, Butler BE, Lomber SG. Effects of neonatal deafness on resting-state functional network connectivity. Neuroimage 2017; 165:69-82. [PMID: 28988830 DOI: 10.1016/j.neuroimage.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/04/2017] [Accepted: 10/02/2017] [Indexed: 11/27/2022] Open
Abstract
Normal brain development depends on early sensory experience. Behavioral consequences of brain maturation in the absence of sensory input early in life are well documented. For example, experiments with mature, neonatally deaf human or animal subjects have revealed improved peripheral visual motion detection and spatial localization abilities. Such supranormal behavioral abilities in the nondeprived sensory modality are evidence of compensatory plasticity occurring in deprived brain regions at some point or throughout development. Sensory deprived brain regions may simply become unused neural real-estate resulting in a loss of function. Compensatory plasticity and loss of function are likely reflected in the differences in correlations between brain networks in deaf compared with hearing subjects. To address this, we used resting-state functional magnetic resonance imaging (fMRI) in lightly anesthetized hearing and neonatally deafened cats. Group independent component analysis (ICA) was used to identify 20 spatially distinct brain networks across all animals including auditory, visual, somatosensory, cingulate, insular, cerebellar, and subcortical networks. The resulting group ICA components were back-reconstructed to individual animal brains. The maximum correlations between the time-courses associated with each spatial component were computed using functional network connectivity (FNC). While no significant differences in the delay to peak correlations were identified between hearing and deaf cats, we observed 10 (of 190) significant differences in the amplitudes of between-network correlations. Six of the significant differences involved auditory-related networks and four involved visual, cingulate, or somatosensory networks. The results are discussed in context of known behavioral, electrophysiological, and anatomical differences following neonatal deafness. Furthermore, these results identify novel targets for future investigations at the neuronal level.
Collapse
Affiliation(s)
- Daniel Stolzberg
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Blake E Butler
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada; Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada
| | - Stephen G Lomber
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada; Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada; National Centre for Audiology, University of Western Ontario, London, Ontario, N6G 1H1, Canada.
| |
Collapse
|
8
|
Stolzberg D, Wong C, Butler BE, Lomber SG. Catlas: An magnetic resonance imaging-based three-dimensional cortical atlas and tissue probability maps for the domestic cat (Felis catus). J Comp Neurol 2017; 525:3190-3206. [PMID: 28653335 DOI: 10.1002/cne.24271] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 12/19/2022]
Abstract
Brain atlases play an important role in effectively communicating results from neuroimaging studies in a standardized coordinate system. Furthermore, brain atlases extend analysis of functional magnetic resonance imaging (MRI) data by delineating regions of interest over which to evaluate the extent of functional activation as well as measures of inter-regional connectivity. Here, we introduce a three-dimensional atlas of the cat cerebral cortex based on established cytoarchitectonic and electrophysiological findings. In total, 71 cerebral areas were mapped onto the gray matter (GM) of an averaged T1-weighted structural MRI acquired at 7 T from eight adult domestic cats. In addition, a nonlinear registration procedure was used to generate a common template brain as well as GM, white matter, and cerebral spinal fluid tissue probability maps to facilitate tissue segmentation as part of the standard preprocessing pipeline for MRI data analysis. The atlas and associated files can also be used for planning stereotaxic surgery and for didactic purposes.
Collapse
Affiliation(s)
- Daniel Stolzberg
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Carmen Wong
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Blake E Butler
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada.,National Centre for Audiology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G Lomber
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada.,National Centre for Audiology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Butler BE, Chabot N, Lomber SG. Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats. J Comp Neurol 2016; 524:3042-63. [DOI: 10.1002/cne.24005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Nicole Chabot
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Stephen G. Lomber
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Department of Psychology; University of Western Ontario; London Ontario Canada N6A 5C2
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
- National Centre for Audiology; University of Western Ontario; London Ontario Canada N6G 1H1
| |
Collapse
|
10
|
Hall AJ, Butler BE, Lomber SG. The cat's meow: A high-field fMRI assessment of cortical activity in response to vocalizations and complex auditory stimuli. Neuroimage 2016; 127:44-57. [DOI: 10.1016/j.neuroimage.2015.11.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 01/26/2023] Open
|
11
|
Hong KS, Santosa H. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hear Res 2016; 333:157-166. [PMID: 26828741 DOI: 10.1016/j.heares.2016.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/13/2023]
Abstract
The ability of the auditory cortex in the brain to distinguish different sounds is important in daily life. This study investigated whether activations in the auditory cortex caused by different sounds can be distinguished using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses (HRs) in both hemispheres using fNIRS were measured in 18 subjects while exposing them to four sound categories (English-speech, non-English-speech, annoying sounds, and nature sounds). As features for classifying the different signals, the mean, slope, and skewness of the oxy-hemoglobin (HbO) signal were used. With regard to the language-related stimuli, the HRs evoked by understandable speech (English) were observed in a broader brain region than were those evoked by non-English speech. Also, the magnitudes of the HbO signals evoked by English-speech were higher than those of non-English speech. The ratio of the peak values of non-English and English speech was 72.5%. Also, the brain region evoked by annoying sounds was wider than that by nature sounds. However, the signal strength for nature sounds was stronger than that for annoying sounds. Finally, for brain-computer interface (BCI) purposes, the linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were applied to the four sound categories. The overall classification performance for the left hemisphere was higher than that for the right hemisphere. Therefore, for decoding of auditory commands, the left hemisphere is recommended. Also, in two-class classification, the annoying vs. nature sounds comparison provides a higher classification accuracy than the English vs. non-English speech comparison. Finally, LDA performs better than SVM.
Collapse
Affiliation(s)
- Keum-Shik Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hendrik Santosa
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|