1
|
The hTERT-p50 homodimer inhibits PLEKHA7 expression to promote gastric cancer invasion and metastasis. Oncogene 2023; 42:1144-1156. [PMID: 36823376 PMCID: PMC10063444 DOI: 10.1038/s41388-023-02630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Although accumulating evidence has highlighted the molecular mechanisms by which hTERT promotes tumour cell invasion and metastasis, the molecular mechanisms of the properties enabling hTERT to contribute to invasion and metastasis have not been clearly illustrated. Here, we report that hTERT promotes gastric cancer invasion and metastasis by recruiting p50 to synergistically inhibit PLEKHA7 expression. We observed that the expression of PLEKHA7 in gastric cancer was significantly negatively associated with the TNM stage and lymphatic metastasis and that decreased PLEKHA7 expression dramatically increased invasion and metastasis in gastric cancer cells. Further mechanistic research showed that hTERT directly regulates PLEKHA7 expression by binding p50 and recruiting the hTERT/p50 complex to the PLEKHA7 promoter. Increased hTERT dramatically decreased PLEKHA7 expression and promoted invasion and metastasis in gastric cancer cells. The hTERT-mediated invasion/metastasis properties at least partially depended on PLEKHA7. Our work uncovers a novel molecular mechanism underlying invasion/metastasis in gastric cancer orchestrated by hTERT and p50.
Collapse
|
2
|
Acharekar A, Bachal K, Shirke P, Thorat R, Banerjee A, Gardi N, Majumder A, Dutt S. Substrate stiffness regulates the recurrent glioblastoma cell morphology and aggressiveness. Matrix Biol 2023; 115:107-127. [PMID: 36563706 DOI: 10.1016/j.matbio.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Recurrent glioblastoma is highly aggressive with currently no specific treatment regime. Therefore, to identify novel therapeutic targets for recurrent GBM, we used a cellular model developed in our lab from commercially available cell line U87MG and patient-derived cultures that allows the comparison between radiation naïve (Parent) and recurrent GBM cells generated after parent cells are exposed to lethal dose of radiation. Total RNA-seq of parent and recurrent population revealed significant upregulation of cell-ECM interactions pathway in the recurrent population. These results led us to hypothesize that the physical microenvironment contributes to the aggressiveness of recurrent GBM. To verify this, we cultured parent and recurrent GBM cells on collagen-coated polyacrylamide gels mimicking the stiffness of normal brain (Young's modulus E = 0.5kPa) or tumorigenic brain (E = 10kPa) and tissue culture plastic dishes (E ∼ 1 GPa). We found that compared to parent cells, recurrent cells showed higher proliferation, invasion, migration, and resistance to EGFR inhibitor. Using orthotopic GBM mouse model and resection model, we demonstrate that recurrent cells cultured on 0.5kPa had higher in vivo tumorigenicity and recurrent disease progression than parent cells, whereas these differences were insignificant when parent and recurrent cells were cultured on plastic substrates. Furthermore, recurrent cells on 0.5kPa showed high expression of ECM proteins like Collagen, MMP2 and MMP9. These proteins were also significantly upregulated in recurrent patient biopsies. Additionally, the brain of mice injected with recurrent cells grown on 0.5kPa showed higher Young's moduli suggesting the ability of these cells to make the surrounding ECM stiffer. Total RNA-seq of parent and recurrent cells grown on plastic and 0.5kpa identified PLEKHA7 significantly upregulated specifically in recurrent cells grown on 0.5 kPa substrate. PLEKHA7 was also found to be high in recurrent GBM patient biopsies. Accordingly, PLEKHA7 knockdown reduced invasion and survival of recurrent GBM cells. Together, these data provide an in vitro model system that captures the observed in vivo and clinical behavior of recurrent GBM by mimicking mechanical microenvironment and identifies PLEKHA7 as a novel potential target for recurrent GBM.
Collapse
Affiliation(s)
- Anagha Acharekar
- Shilpee Dutt laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Ketaki Bachal
- M-Lab, Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Pallavi Shirke
- M-Lab, Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Archisman Banerjee
- Shilpee Dutt laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Nilesh Gardi
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Abhijit Majumder
- M-Lab, Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shilpee Dutt
- Shilpee Dutt laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India..
| |
Collapse
|
3
|
Mohammed SA, Kimura Y, Toku Y, Ju Y. Bioengineered PLEKHA7 nanodelivery regularly induces behavior alteration and growth retardation of acute myeloid leukemia. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100045. [PMID: 36824159 PMCID: PMC9934477 DOI: 10.1016/j.bbiosy.2022.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most lethal leukemia with an extremely poor prognosis and high relapse rates. In leukemogenesis, adhesion abnormalities can readily guide an imbalance between hematopoietic progenitor cells and bone marrow stromal cells, altering the normal hematopoietic bone marrow microenvironment into leukemic transformation that enhances leukemic proliferation. Here, we have firstly studied the PLEKHA7 expression in leukemic cells to assess their growth capability affected by the restoration of PLEKHA7 in the cells. The efficacy of PLEKHA7-loaded cRGD-mediated PEGylated cationic lipid nanoparticles for efficient PLEKHA7 delivery in leukemic cells as well as the effect of PLEKHA7 on the regulated induction of AML behavior and growth alterations were investigated. PLEKHA7 re-expression diminished colony-forming ability and reinforced the incidence of growth retardation without apoptosis in AML cell lines. PLEKHA7 regulated the restoration of cell surface adhesion and integrity during normal homeostasis. Our findings revealed that PLEKHA7 functions as a behavior and growth modulator in AML. To our knowledge, the role of PLEKHA7 in AML had not been studied previously and our data could be exploited for further mechanistic studies and insights into altering human AML behavior and growth.
Collapse
Affiliation(s)
- Sameh A. Mohammed
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Yasuhiro Kimura
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuhki Toku
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yang Ju
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan,Corresponding author at: Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
4
|
Kourtidis A, Dighera B, Risner A, Hackemack R, Nikolaidis N. Origin and Evolution of the Multifaceted Adherens Junction Component Plekha7. Front Cell Dev Biol 2022; 10:856975. [PMID: 35399503 PMCID: PMC8983885 DOI: 10.3389/fcell.2022.856975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Plekha7 is a key adherens junction component involved in numerous functions in mammalian cells. Plekha7 is the most studied member of the PLEKHA protein family, which includes eight members with diverse functions. However, the evolutionary history of Plekha7 remains unexplored. Here, we outline the phylogeny and identify the origins of this gene and its paralogs. We show that Plekha7, together with Plekha4, Plekha5, and Plekha6, belong to a subfamily that we name PLEKHA4/5/6/7. This subfamily is distinct from the other Plekha proteins, which form two additional separate subfamilies, namely PLEKHA1/2 and PLEKHA3/8. Sequence, phylogenetic, exon-intron organization, and syntenic analyses reveal that the PLEKHA4/5/6/7 subfamily is represented by a single gene in invertebrates, which remained single in the last common ancestor of all chordates and underwent gene duplications distinctly in jawless and jawed vertebrates. In the latter species, a first round of gene duplications gave rise to the Plekha4/7 and Plekha5/6 pairs and a second round to the four extant members of the subfamily. These observations are consistent with the 1R/2R hypothesis of vertebrate genome evolution. Plekha7 and Plekha5 also exist in two copies in ray-finned fishes, due to the Teleostei-specific whole genome duplication. Similarities between the vertebrate Plekha4/5/6/7 members and non-chordate sequences are restricted to their N-terminal PH domains, whereas similarities across the remaining protein molecule are only sporadically found among few invertebrate species and are limited to the coiled-coil and extreme C-terminal ends. The vertebrate Plekha4/5/6/7 proteins contain extensive intrinsically disordered domains, which are topologically and structurally conserved in all chordates, but not in non-chordate invertebrates. In summary, our study sheds light on the origins and evolution of Plekha7 and the PLEKHA4/5/6/7 subfamily and unveils new critical information suitable for future functional studies of this still understudied group of proteins.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Bryan Dighera
- Department of Biological Science, Center for Applied Biotechnology Studies, Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Alyssa Risner
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Rob Hackemack
- Department of Biological Science, Center for Applied Biotechnology Studies, Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
5
|
Jeung HC, Puentes R, Aleshin A, Indarte M, Correa RG, Bankston LA, Layng FIAL, Ahmed Z, Wistuba I, Yao Y, Duenas DG, Zhang S, Meuillet EJ, Marassi F, Liddington RC, Kirkpatrick L, Powis G. PLEKHA7 signaling is necessary for the growth of mutant KRAS driven colorectal cancer. Exp Cell Res 2021; 409:112930. [PMID: 34800542 DOI: 10.1016/j.yexcr.2021.112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Plekha7 (Pleckstrin homology [PH] domain containing, family A member 7) regulates the assembly of proteins of the cytoplasmic apical zonula adherens junction (AJ), thus ensuring cell-cell adhesion and tight-junction barrier integrity. Little is known of Plekha7 function in cancer. In colorectal cancer (CRC) Plekha7 expression is elevated compared to adjacent normal tissue levels, increasing with clinical stage. Plekha7 was present at plasma membrane AJ with wild-type KRas (wt-KRas) but was dispersed in cells expressing mutant KRas (mut-KRas). Fluorescence lifetime imaging microscopy (FLIM) indicated a direct Plekha7 interaction with wt-KRas but scantily with mut-KRas. Inhibiting Plekha7 specifically decreased mut-KRas cell signaling, proliferation, attachment, migration, and retarded mut-KRAS CRC tumor growth. Binding of diC8-phosphoinositides (PI) to the PH domain of Plekha7 was relatively low affinity. This may be because a D175 amino acid residue plays a "sentry" role preventing PI(3,4)P2 and PI(3,4,5)P3 binding. Molecular or pharmacological inhibition of the Plekha7 PH domain prevented the growth of mut-KRas but not wt-KRas cells. Taken together the studies suggest that Plekha7, in addition to maintaining AJ structure plays a role in mut-KRas signaling and phenotype through interaction of its PH domain with membrane mut-KRas, but not wt-KRas, to increase the efficiency of mut-KRas downstream signaling.
Collapse
Affiliation(s)
- Hei-Cheul Jeung
- MD Anderson Cancer Center, Houston, TX, USA; Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-Gu, Seoul, South Korea
| | - Roisin Puentes
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Alexander Aleshin
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | | | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Laurie A Bankston
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Fabiana I A L Layng
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | | | | | - Yong Yao
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Daniela G Duenas
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | | | | | - Francesca Marassi
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | | | - Garth Powis
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA; PHusis Therapeutics, La Jolla, CA, USA.
| |
Collapse
|
6
|
Sluysmans S, Méan I, Jond L, Citi S. WW, PH and C-Terminal Domains Cooperate to Direct the Subcellular Localizations of PLEKHA5, PLEKHA6 and PLEKHA7. Front Cell Dev Biol 2021; 9:729444. [PMID: 34568338 PMCID: PMC8458771 DOI: 10.3389/fcell.2021.729444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
PLEKHA5, PLEKHA6, and PLEKHA7 (WW-PLEKHAs) are members of the PLEKHA family of proteins that interact with PDZD11 through their tandem WW domains. WW-PLEKHAs contribute to the trafficking and retention of transmembrane proteins, including nectins, Tspan33, and the copper pump ATP7A, at cell-cell junctions and lateral membranes. However, the structural basis for the distinct subcellular localizations of PLEKHA5, PLEKHA6, and PLEKHA7 is not clear. Here we expressed mutant and chimeric proteins of WW-PLEKHAs in cultured cells to clarify the role of their structural domains in their localization. We found that the WW-mediated interaction between PLEKHA5 and PDZD11 is required for their respective association with cytoplasmic microtubules. The PH domain of PLEKHA5 is required for its localization along the lateral plasma membrane and promotes the lateral localization of PLEKHA7 in a chimeric molecule. Although the PH domain of PLEKHA7 is not required for its localization at the adherens junctions (AJ), it promotes a AJ localization of chimeric proteins. The C-terminal region of PLEKHA6 and PLEKHA7 and the coiled-coil region of PLEKHA7 promote their localization at AJ of epithelial cells. These observations indicate that the localizations of WW-PLEKHAs at specific subcellular sites, where they recruit PDZD11, are the result of multiple cooperative protein-lipid and protein-protein interactions and provide a rational basis for the identification of additional proteins involved in trafficking and sorting of WW-PLEKHAs.
Collapse
Affiliation(s)
| | | | | | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Aleshin AE, Yao Y, Iftikhar A, Bobkov AA, Yu J, Cadwell G, Klein MG, Dong C, Bankston LA, Liddington RC, Im W, Powis G, Marassi FM. Structural basis for the association of PLEKHA7 with membrane-embedded phosphatidylinositol lipids. Structure 2021; 29:1029-1039.e3. [PMID: 33878292 DOI: 10.1016/j.str.2021.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/15/2021] [Accepted: 03/25/2021] [Indexed: 01/11/2023]
Abstract
PLEKHA7 (pleckstrin homology domain containing family A member 7) plays key roles in intracellular signaling, cytoskeletal organization, and cell adhesion, and is associated with multiple human cancers. The interactions of its pleckstrin homology (PH) domain with membrane phosphatidyl-inositol-phosphate (PIP) lipids are critical for proper cellular localization and function, but little is known about how PLEKHA7 and other PH domains interact with membrane-embedded PIPs. Here we describe the structural basis for recognition of membrane-bound PIPs by PLEHA7. Using X-ray crystallography, nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the interaction of PLEKHA7 with PIPs is multivalent, distinct from a discrete one-to-one interaction, and induces PIP clustering. Our findings reveal a central role of the membrane assembly in mediating protein-PIP association and provide a roadmap for understanding how the PH domain contributes to the signaling, adhesion, and nanoclustering functions of PLEKHA7.
Collapse
Affiliation(s)
- Alexander E Aleshin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yong Yao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amer Iftikhar
- Departments of Biological Sciences, Chemistry and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Andrey A Bobkov
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jinghua Yu
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gregory Cadwell
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael G Klein
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chuqiao Dong
- Departments of Biological Sciences, Chemistry and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Laurie A Bankston
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert C Liddington
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Garth Powis
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
PLEKHA7, an Apical Adherens Junction Protein, Suppresses Inflammatory Breast Cancer in the Context of High E-Cadherin and p120-Catenin Expression. Int J Mol Sci 2021; 22:ijms22031275. [PMID: 33525380 PMCID: PMC7865280 DOI: 10.3390/ijms22031275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory breast cancer is a highly aggressive form of breast cancer that forms clusters of tumor emboli in dermal lymphatics and readily metastasizes. These cancers express high levels of E-cadherin, the major mediator of adherens junctions, which enhances formation of tumor emboli. Previous studies suggest that E-cadherin promotes cancer when the balance between apical and basolateral cadherin complexes is disrupted. Here, we used immunohistochemistry of inflammatory breast cancer patient samples and analysis of cell lines to determine the expression of PLEKHA7, an apical adherens junction protein. We used viral transduction to re-express PLEKHA7 in inflammatory breast cancer cells and examined their aggressiveness in 2D and 3D cultures and in vivo. We determined that PLEKHA7 was deregulated in inflammatory breast cancer, demonstrating improper localization or lost expression in most patient samples and very low expression in cell lines. Re-expressing PLEKHA7 suppressed proliferation, anchorage independent growth, spheroid viability, and tumor growth in vivo. The data indicate that PLEKHA7 is frequently deregulated and acts to suppress inflammatory breast cancer. The data also promote the need for future inquiry into the imbalance between apical and basolateral cadherin complexes as driving forces in inflammatory breast cancer.
Collapse
|
9
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
10
|
Damaschke NA, Gawdzik J, Avilla M, Yang B, Svaren J, Roopra A, Luo JH, Yu YP, Keles S, Jarrard DF. CTCF loss mediates unique DNA hypermethylation landscapes in human cancers. Clin Epigenetics 2020; 12:80. [PMID: 32503656 PMCID: PMC7275597 DOI: 10.1186/s13148-020-00869-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background The chromatin insulator CCCTC-binding factor (CTCF) displays tissue-specific DNA binding sites that regulate transcription and chromatin organization. Despite evidence linking CTCF to the protection of epigenetic states through barrier insulation, the impact of CTCF loss on genome-wide DNA methylation sites in human cancer remains undefined. Results Here, we demonstrate that prostate and breast cancers within The Cancer Genome Atlas (TCGA) exhibit frequent copy number loss of CTCF and that this loss is associated with increased DNA methylation events that occur preferentially at CTCF binding sites. CTCF sites differ among tumor types and result in tissue-specific methylation patterns with little overlap between breast and prostate cancers. DNA methylation and transcriptome profiling in vitro establish that forced downregulation of CTCF leads to spatially distinct DNA hypermethylation surrounding CTCF binding sites, loss of CTCF binding, and decreased gene expression that is also seen in human tumors. DNA methylation inhibition reverses loss of expression at these CTCF-regulated genes. Conclusion These findings establish CTCF loss as a major mediator in directing localized DNA hypermethylation events in a tissue-specific fashion and further support its role as a driver of the cancer phenotype.
Collapse
Affiliation(s)
- Nathan A Damaschke
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Joseph Gawdzik
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mele Avilla
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bing Yang
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yan P Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sunduz Keles
- Department of Biostatistic and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - David F Jarrard
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. .,University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA. .,Environmental and Molecular Toxicology, University of Wisconsin, Madison, WI, USA. .,7037 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
11
|
Nair-Menon J, Daulagala AC, Connor DM, Rutledge L, Penix T, Bridges MC, Wellslager B, Spyropoulos DD, Timmers CD, Broome AM, Kourtidis A. Predominant Distribution of the RNAi Machinery at Apical Adherens Junctions in Colonic Epithelia Is Disrupted in Cancer. Int J Mol Sci 2020; 21:E2559. [PMID: 32272708 PMCID: PMC7177752 DOI: 10.3390/ijms21072559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/30/2022] Open
Abstract
The RNA interference (RNAi) machinery is an essential component of the cell, regulating miRNA biogenesis and function. RNAi complexes were thought to localize either in the nucleus, such as the microprocessor, or in the cytoplasm, such as the RNA-induced silencing complex (RISC). We recently revealed that the core microprocessor components DROSHA and DGCR8, as well as the main components of RISC, including Ago2, also associate with the apical adherens junctions of well-differentiated cultured epithelial cells. Here, we demonstrate that the localization of the core RNAi components is specific and predominant at apical areas of cell-cell contact of human normal colon epithelial tissues and normal primary colon epithelial cells. Importantly, the apical junctional localization of RNAi proteins is disrupted or lost in human colon tumors and in poorly differentiated colon cancer cell lines, correlating with the dysregulation of the adherens junction component PLEKHA7. We show that the restoration of PLEKHA7 expression at adherens junctions of aggressively tumorigenic colon cancer cells restores the junctional localization of RNAi components and suppresses cancer cell growth in vitro and in vivo. In summary, this work identifies the apical junctional localization of the RNAi machinery as a key feature of the differentiated colonic epithelium, with a putative tumor suppressing function.
Collapse
Affiliation(s)
- Joyce Nair-Menon
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Amanda C. Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Dean M. Connor
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (D.M.C.); (A.-M.B.)
| | - Lauren Rutledge
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Trevor Penix
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Bridgette Wellslager
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Demetri D. Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA;
| | - Cynthia D. Timmers
- Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA;
| | - Ann-Marie Broome
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (D.M.C.); (A.-M.B.)
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| |
Collapse
|
12
|
Rea K, Roggiani F, De Cecco L, Raspagliesi F, Carcangiu ML, Nair-Menon J, Bagnoli M, Bortolomai I, Mezzanzanica D, Canevari S, Kourtidis A, Anastasiadis PZ, Tomassetti A. Simultaneous E-cadherin and PLEKHA7 expression negatively affects E-cadherin/EGFR mediated ovarian cancer cell growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:146. [PMID: 29996940 PMCID: PMC6042237 DOI: 10.1186/s13046-018-0796-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022]
Abstract
Background The disruption of E-cadherin-mediated adhesion is considered an important driver of tumor progression. Nevertheless, numerous studies have demonstrated that E-cadherin promotes growth- or invasion-related signaling, contrary to the prevailing notion. During tumor progression, epithelial ovarian cancer (EOC) maintains E-cadherin expression and can positively affect EOC cell growth by contributing to PI3K/AKT activation. In polarized epithelia PLEKHA7, a regulator of the zonula adherens integrity, impinges E-cadherin functionality, but its role in EOCs has been never studied. Methods Ex-vivo EOC cells and cell lines were used to study E-cadherin contribution to growth and EGFR activation. The expression of the proteins involved was assessed by real time RT-PCR, immunohistochemistry and western blotting. Cells growth and drug susceptibility was monitored in different 3-dimensional (3D) systems. Recombinant lentivirus-mediated gene expression, western blotting, immunoprecipitation and confocal microscopy were applied to investigate the biological impact of PLEKHA7 on E-cadherin behaviour. The clinical impact of PLEKHA7 was determined in publicly available datasets. Results We show that E-cadherin expression contributes to growth of EOC cells and forms a complex with EGFR thus positively affecting ligand-dependent EGFR/CDK5 signaling. Accordingly, 3D cultures of E-cadherin-expressing EOC cells are sensitive to the CDK5 inhibitor roscovitine combined with cisplatin. We determined that PLEKHA7 overexpression reduces the formation of E-cadherin-EGFR complex, EGFR activation and cell tumorigenicity. Clinically, PLEKHA7 mRNA is statistically decreased in high grade EOCs respect to low malignant potential and low grade EOCs and correlates with better EOC patient outcome. Conclusions These data represent a significant step towards untangling the role of E-cadherin in EOCs by assessing its positive effects on EGFR/CDK5 signaling and its contribution to cell growth. Hence, the inhibition of this signaling using a CDK5 inhibitor exerts a synergistic effect with cisplatin prompting on the design of new therapeutic strategies to inhibit growth of EOC cells. We assessed for the first time in EOC cells that PLEKHA7 induces changes in the asset of E-cadherin-containing cell-cell contacts thus inhibiting E-cadherin/EGFR crosstalk and leading to a less aggressive tumor phenotype. Accordingly, PLEKHA7 levels are lower in high grade EOC patient tumors and EOC patients with better outcomes display higher PLEKHA7 levels. Electronic supplementary material The online version of this article (10.1186/s13046-018-0796-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katia Rea
- Unit of Molecular Therapies, Department of Research, Via Amadeo 42, 20133, Milan, Italy
| | - Francesca Roggiani
- Unit of Molecular Therapies, Department of Research, Via Amadeo 42, 20133, Milan, Italy
| | - Loris De Cecco
- Genomics, Department of Applied Research and Technology Development, Via Amadeo 42, 20133, Milan, Italy
| | | | - Maria Luisa Carcangiu
- Unit of Anatomic Pathology I, Deparment of Anatomic Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Joyce Nair-Menon
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Marina Bagnoli
- Unit of Molecular Therapies, Department of Research, Via Amadeo 42, 20133, Milan, Italy
| | - Ileana Bortolomai
- Unit of Molecular Therapies, Department of Research, Via Amadeo 42, 20133, Milan, Italy.,Present address: Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Research, Via Amadeo 42, 20133, Milan, Italy
| | - Silvana Canevari
- Unit of Molecular Therapies, Department of Research, Via Amadeo 42, 20133, Milan, Italy
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Panos Z Anastasiadis
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Antonella Tomassetti
- Unit of Molecular Therapies, Department of Research, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
13
|
Kourtidis A, Necela B, Lin WH, Lu R, Feathers RW, Asmann YW, Thompson EA, Anastasiadis PZ. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling. J Cell Biol 2017; 216:3073-3085. [PMID: 28877994 PMCID: PMC5626537 DOI: 10.1083/jcb.201612125] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 06/15/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Brian Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | | | | |
Collapse
|
14
|
Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res 2017; 358:78-85. [PMID: 28412244 PMCID: PMC5544584 DOI: 10.1016/j.yexcr.2017.04.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
Cadherins are homophilic adhesion molecules with important functions in cell-cell adhesion, tissue morphogenesis, and cancer. In epithelial cells, E-cadherin accumulates at areas of cell-cell contact, coalesces into macromolecular complexes to form the adherens junctions (AJs), and associates via accessory partners with a subcortical ring of actin to form the apical zonula adherens (ZA). As a master regulator of the epithelial phenotype, E-cadherin is essential for the overall maintenance and homeostasis of polarized epithelial monolayers. Its expression is regulated by a host of genetic and epigenetic mechanisms related to cancer, and its function is modulated by mechanical forces at the junctions, by direct binding and phosphorylation of accessory proteins collectively termed catenins, by endocytosis, recycling and degradation, as well as, by multiple signaling pathways and developmental processes, like the epithelial to mesenchymal transition (EMT). Nuclear signaling mediated by the cadherin associated proteins β-catenin and p120 promotes growth, migration and pluripotency. Receptor tyrosine kinase, PI3K/AKT, Rho GTPase, and HIPPO signaling, are all regulated by E-cadherin mediated cell-cell adhesion. Finally, the recruitment of the microprocessor complex to the ZA by PLEKHA7, and the subsequent regulation of a small subset of miRNAs provide an additional mechanism by which the state of epithelial cell-cell adhesion affects translation of target genes to maintain the homeostasis of polarized epithelial monolayers. Collectively, the data indicate that loss of E-cadherin function, especially at the ZA, is a common and crucial step in cancer progression.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Lindy J Pence
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
15
|
Kourtidis A, Anastasiadis PZ. PLEKHA7 defines an apical junctional complex with cytoskeletal associations and miRNA-mediated growth implications. Cell Cycle 2016; 15:498-505. [PMID: 26822694 DOI: 10.1080/15384101.2016.1141840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
E-cadherin-p120 catenin complexes are essential for adherens junction (AJ) formation and for the maintenance of the normal epithelial phenotype. PLEKHA7 was originally identified as a member of this complex that tethers microtubules to the AJs and supports their overall integrity. Recently, we revealed that PLEKHA7 regulates cellular behavior via miRNAs by associating with the microprocessor complex at the apical zonula adherens (ZA). We have also identified a new set of PLEKHA7 interacting partners at the apical ZA, via proteomics. Our analysis shows that the main groups of proteins associating with PLEKHA7 are cytoskeletal-related and RNA-binding proteins. Here, we provide extended evidence for association of PLEKHA7 with several of these proteins. We also show that PLEKHA7 loss activates the actin regulator cofilin in a p120-dependent manner, providing an explanation for the effects of PLEKHA7 on the cortical actin ring. Interestingly, PLEKHA7 regulates the levels and associates with PP1α, a phosphatase responsible for cofilin activation. Finally, we clarify the mode of regulation of the oncogenic miR-19a by PLEKHA7. Overall, our findings support a multi-layered role of PLEKHA7 in converging cytoskeletal dynamics and miRNA-mediated growth regulation at the ZA, with potentially critical implications in cancer that warrant further investigation.
Collapse
Affiliation(s)
- Antonis Kourtidis
- a Department of Cancer Biology , Mayo Clinic Comprehensive Cancer, Center, Mayo Clinic , Jacksonville , FL , USA
| | - Panos Z Anastasiadis
- a Department of Cancer Biology , Mayo Clinic Comprehensive Cancer, Center, Mayo Clinic , Jacksonville , FL , USA
| |
Collapse
|
16
|
Christgen M, Steinemann D, Kühnle E, Länger F, Gluz O, Harbeck N, Kreipe H. Lobular breast cancer: Clinical, molecular and morphological characteristics. Pathol Res Pract 2016; 212:583-97. [DOI: 10.1016/j.prp.2016.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 01/20/2023]
|
17
|
Shah J, Guerrera D, Vasileva E, Sluysmans S, Bertels E, Citi S. PLEKHA7: Cytoskeletal adaptor protein at center stage in junctional organization and signaling. Int J Biochem Cell Biol 2016; 75:112-6. [PMID: 27072621 DOI: 10.1016/j.biocel.2016.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
PLEKHA7 is a recently characterized component of the cytoplasmic region of epithelial adherens junctions (AJ). It comprises two WW domains, a pleckstrin-homology domain, and proline-rich and coiled-coil domains. PLEKHA7 interacts with cytoplasmic components of the AJ (p120-catenin, paracingulin, afadin), stabilizes the E-cadherin complex by linking it to the minus ends of noncentrosomal microtubules, and stabilizes junctional nectins through the newly identified interactor PDZD11. Similarly to afadin, and unlike E-cadherin and p120-catenin, the localization of PLEKHA7 at AJ is strictly zonular (in the zonula adhaerens subdomain of AJ), and does not extend along the basolateral contacts. Genome-wide association studies and experiments on animal and cellular models show that although PLEKHA7 is not required for organism viability, it is implicated in cardiovascular physiology, hypertension, primary angle closure glaucoma, susceptibility to staphylococcal α-toxin, and epithelial morphogenesis and growth. Thus, PLEKHA7 is a cytoskeletal adaptor protein important for AJ organization, and at the center of junction-associated signaling pathways which fine-tune important pathophysiological processes.
Collapse
Affiliation(s)
- Jimit Shah
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Diego Guerrera
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sophie Sluysmans
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Eva Bertels
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|