1
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Rajan S, Hofer P, Christiano A, Stevenson M, Ragolia L, Villa-Cuesta E, Fried SK, Lau R, Braithwaite C, Zechner R, Schwartz GJ, Hussain MM. Microsomal triglyceride transfer protein regulates intracellular lipolysis in adipocytes independent of its lipid transfer activity. Metabolism 2022; 137:155331. [PMID: 36228741 DOI: 10.1016/j.metabol.2022.155331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The triglyceride (TG) transfer activity of microsomal triglyceride transfer protein (MTP) is essential for lipoprotein assembly in the liver and intestine; however, its function in adipose tissue, which does not assemble lipoproteins, is unknown. Here we have elucidated the function of MTP in adipocytes. APPROACH AND RESULTS We demonstrated that MTP is present on lipid droplets in human adipocytes. Adipose-specific MTP deficient (A-Mttp-/-) male and female mice fed an obesogenic diet gained less weight than Mttpf/f mice, had less fat mass, smaller adipocytes and were insulin sensitive. A-Mttp-/- mice showed higher energy expenditure than Mttpf/f mice. During a cold challenge, A-Mttp-/- mice maintained higher body temperature by mobilizing more fatty acids. Biochemical studies indicated that MTP deficiency de-repressed adipose triglyceride lipase (ATGL) activity and increased TG lipolysis. Both wild type MTP and mutant MTP deficient in TG transfer activity interacted with and inhibited ATGL activity. Thus, the TG transfer activity of MTP is not required for ATGL inhibition. C-terminally truncated ATGL that retains its lipase activity interacted less efficiently than full-length ATGL. CONCLUSION Our findings demonstrate that adipose-specific MTP deficiency increases ATGL-mediated TG lipolysis and enhances energy expenditure, thereby resisting diet-induced obesity. We speculate that the regulatory function of MTP involving protein-protein interactions might have evolved before the acquisition of TG transfer activity in vertebrates. Adipose-specific inhibition of MTP-ATGL interactions may ameliorate obesity while avoiding the adverse effects associated with inhibition of the lipid transfer activity of MTP.
Collapse
Affiliation(s)
- Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Amanda Christiano
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Matthew Stevenson
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Eugenia Villa-Cuesta
- Department of Biology, College of Arts and Science, Adelphi University, Garden City, NY 11530, United States of America
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Raymond Lau
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Collin Braithwaite
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Gary J Schwartz
- Department of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America.
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America; Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, United States of America.
| |
Collapse
|
3
|
Peng T, Ding M, Yan H, Li Q, Zhang P, Tian R, Zheng L. Exercise Training Upregulates Cardiac mtp Expression in Drosophila melanogaster with HFD to Improve Cardiac Dysfunction and Abnormal Lipid Metabolism. BIOLOGY 2022; 11:biology11121745. [PMID: 36552256 PMCID: PMC9775405 DOI: 10.3390/biology11121745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Current evidence suggests that the heart plays an important role in regulating systemic lipid homeostasis, and high-fat diet (HFD)-induced obesity is a major cause of cardiovascular disease, although little is known about the specific mechanisms involved. Exercise training can reportedly improve abnormal lipid metabolism and cardiac dysfunction induced by high-fat diets; however, the molecular mechanisms are not yet understood. In the present study, to explore the relationship between exercise training and cardiac mtp in HFD flies and potential mechanisms by which exercise training affects HFD flies, Drosophila was selected as a model organism, and the GAL4/UAS system was used to specifically knock down the target gene. Experiments revealed that HFD-fed Drosophila exhibited changes in body weight, increased triglycerides (TG) and dysregulated cardiac contractility, consistent with observations in mammals. Interestingly, inhibition of cardiac mtp expression reduced HFD-induced cardiac damage and mitigated the increase in triglycerides. Further studies showed that in HFD +w1118, HFD + Hand > w1118, and HFD+ Hand > mtpRNAi, cardiac mtp expression downregulation induced by HFD was treated by exercise training and mitochondrial β-oxidation capacity in cardiomyocytes was reversed. Overall, knocking down mtp in the heart prevented an increase in systemic TG levels and protected cardiac contractility from damage caused by HFD, similar to the findings observed after exercise training. Moreover, exercise training upregulated the decrease in cardiac mtp expression induced by HFD. Increased Had1 and Acox3 expression were observed, consistent with changes in cardiac mtp expression.
Collapse
|
4
|
Selvam C, Saito T, Sissener NH, Philip AJP, Sæle Ø. Intracellular trafficking of fatty acids in the fish intestinal epithelial cell line RTgutGC. FRONTIERS IN MARINE SCIENCE 2022; 9. [DOI: 10.3389/fmars.2022.954773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The shift towards higher inclusion of vegetable oils (VOs) in aquafeeds has resulted in major changes in dietary fatty acid composition, especially increased amounts of monounsaturated fatty acids (MUFAs) and decreased polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs). However, little is known about how this change in fatty acid (FA) profile affects the intracellular fate of these fatty acids in the intestinal cells. To investigate this topic, we used the rainbow trout intestinal epithelial cell line (RTgutGC) as an in vitro model. The cells were incubated with either palmitic acid (16:0, PA), oleic acid (18:1n-9, OA), or arachidonic acid (20:4n-6, ARA), to represent the SFA, MUFA, and PUFA, respectively. In all experiments, the RTgutGC were incubated with either non-labeled or radiolabeled FA (PA, OA, or ARA) for 16 h at 190C. The cells were then analyzed for the occurrence of cytosolic lipid droplets (CLD) with confocal microscopy, transcriptomic analysis (non-labeled FA experiments) and lipid class composition in the cells and serosal media from the basolateral side of the cells (radiolabeled FA experiments). CLD accumulation was higher in RTgutGC exposed to OA compared to cells given PA or ARA. This was coupled with increased volume, diameter, and surface area of CLDs in OA treated cells than with other FAs (PA, ARA). The results from radiolabeled FAs performed on permeable transwell inserts showed that OA increased the triacylglycerides (TAG) synthesis and was primarily stored in the cells in CLDs; whereas a significant amount of ARA was transported as TAG to the basolateral compartment. A significant proportion of free FAs was found to be excreted to the serosal basolateral side by the cells, which was significantly higher for PA and OA than ARA. Although there were clear clusters in differentially expressed genes (DEGs) for each treatment group, results from transcriptomics did not correlate to lipid transport and CLD analysis. Overall, the accumulation of TAG in CLDs was higher for oleic acid (OA) compared to arachidonic acid (ARA) and palmitic acid (PA). To conclude, carbon chain length and saturation level of FA differently regulate their intracellular fate during fatty acid absorption.
Collapse
|
5
|
Xue M, Yao T, Xue M, Francis F, Qin Y, Jia M, Li J, Gu X. Mechanism Analysis of Metabolic Fatty Liver on Largemouth bass (Micropterus salmoides) Based on Integrated Lipidomics and Proteomics. Metabolites 2022; 12:metabo12080759. [PMID: 36005631 PMCID: PMC9415018 DOI: 10.3390/metabo12080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Metabolic fatty liver disease caused by high-starch diet restricted the intensive and sustainable development of carnivorous fish such as largemouth bass. In this study, the combination liver proteomic and lipidomic approach was employed to investigate the key signaling pathways and identify the critical biomarkers of fatty liver in largemouth bass. Joint analysis of the correlated differential proteins and lipids revealed nine common metabolic pathways; it was determined that FABP1 were significantly up-regulated in terms of transporting more triglycerides into the liver, while ABCA1 and VDAC1 proteins were significantly down-regulated in terms of preventing the transport of lipids and cholesterol out of the liver, leading to triglyceride accumulation in hepatocyte, eventually resulting in metabolic fatty liver disease. The results indicate that FABP1, ABCA1 and VDAC1 could be potential biomarkers for treating metabolic fatty liver disease of largemouth bass.
Collapse
Affiliation(s)
- Moyong Xue
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Functional & Evolutionary Entomology, Agro-Bio-Tech Gembloux, University of Liege, 5030 Gembloux, Belgium
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Ting Yao
- Beijing Institute of Feed Control, Beijing 110108, China
| | - Min Xue
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Frédéric Francis
- Functional & Evolutionary Entomology, Agro-Bio-Tech Gembloux, University of Liege, 5030 Gembloux, Belgium
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Junguo Li
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Correspondence:
| |
Collapse
|
6
|
Betaine Promotes Fat Accumulation and Reduces Injury in Landes Goose Hepatocytes by Regulating Multiple Lipid Metabolism Pathways. Animals (Basel) 2022; 12:ani12121530. [PMID: 35739867 PMCID: PMC9219492 DOI: 10.3390/ani12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Betaine is a well-established supplement used in livestock feeding. In our previous study, betaine was shown to result in the redistribution of body fat, a healthier steatosis phenotype, and an increased liver weight and triglyceride storage of the Landes goose liver, which is used for foie-gras production. However, these effects are not found in other species and strains, and the underlying mechanism is unclear. Here, we studied the underpinning molecular mechanisms by developing an in vitro fatty liver cell model using primary Landes goose hepatocytes and a high-glucose culture medium. Oil red-O staining, a mitochondrial membrane potential assay, and a qRT-PCR were used to quantify lipid droplet characteristics, mitochondrial β-oxidation, and fatty acid metabolism-related gene expression, respectively. Our in vitro model successfully simulated steatosis caused by overfeeding. Betaine supplementation resulted in small, well-distributed lipid droplets, consistent with previous experiments in vivo. In addition, mitochondrial membrane potential was restored, and gene expression of fatty acid synthesis genes (e.g., sterol regulatory-element binding protein, diacylglycerol acyltransferase 1 and 2) was lower after betaine supplementation. By contrast, the expression of lipid hydrolysis transfer genes (mitochondrial transfer protein and lipoprotein lipase) was higher. Overall, the results provide a scientific basis and theoretical support for the use of betaine in animal production.
Collapse
|
7
|
Partap M, Chhimwal J, Kumar P, Kumar D, Padwad Y, Warghat AR. Growth dynamics and differential accumulation of picrosides and its precursor metabolites in callus cell lines of Picrorhiza kurroa with distinct anti-steatotic potential. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Riera-Heredia N, Lutfi E, Balbuena-Pecino S, Vélez EJ, Dias K, Beaumatin F, Gutiérrez J, Seiliez I, Capilla E, Navarro I. The autophagy response during adipogenesis of primary cultured rainbow trout (Oncorhynchus mykiss) adipocytes. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110700. [PMID: 34848371 DOI: 10.1016/j.cbpb.2021.110700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
Adipogenesis is a tightly regulated process, and the involvement of autophagy has been recently proposed in mammalian models. In rainbow trout, two well-defined phases describe the development of primary cultured adipocyte cells: proliferation and differentiation. Nevertheless, information on the transcriptional profile at the onset of differentiation and the potential role of autophagy in this process is scarce. In the present study, the cells showed an early and transient induction of several adipogenic transcription factors genes' expression (i.e., cebpa and cebpb) along with the morphological changes (round shape filled with small lipid droplets) typical of the onset of adipogenesis. Then, the expression of various lipid metabolism-related genes involving the synthesis (fas), uptake (fatp1 and cd36), accumulation (plin2) and mobilization (hsl) of lipids, characteristic of the mature adipocyte, increased. In parallel, several autophagy markers (i.e., atg4b, gabarapl1 and lc3b) mirrored the expression of those adipogenic-related genes, suggesting a role of autophagy during in vitro fish adipogenesis. In this regard, the incubation of preadipocytes with lysosomal inhibitors (Bafilomycin A1 or Chloroquine), described to prevent autophagy flux, delayed the process of adipogenesis (i.e., cell remodelling), thus suggesting a possible relationship between autophagy and adipocyte differentiation in trout. Moreover, the disruption of the autophagic flux altered the expression of some key adipogenic genes such as cebpa and pparg. Overall, this study contributes to improve our knowledge on the regulation of rainbow trout adipocyte differentiation, and highlights for the first time in fish the involvement of autophagy on adipogenesis, suggesting a close-fitting connection between both processes.
Collapse
Affiliation(s)
- Natàlia Riera-Heredia
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Esmail Lutfi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain; Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419, Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Karine Dias
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419, Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Florian Beaumatin
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419, Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Iban Seiliez
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419, Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
9
|
Zeng X, Lyu L, Zhao D, Zhong J, Feng Y, Wan H, Li C, Zhang Z, Wang Y. dLp/HDL-BGBP and MTP Cloning and Expression Profiles During Embryonic Development in the Mud Crab Scylla paramamosain. Front Physiol 2021; 12:717751. [PMID: 34489734 PMCID: PMC8416765 DOI: 10.3389/fphys.2021.717751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022] Open
Abstract
Lipids are the main energy source for embryonic development in oviparous animals. Prior to the utilization and catabolism, lipids are primarily transported from the yolk sac to embryonic tissues. In the present study, cDNA encoding a circulatory large lipid transfer protein (LLTP) superfamily member, the precursor of large discoidal lipoprotein (dLp) and high-density lipoprotein/β-1,3-glucan-binding protein (HDL-BGBP), named dLp/HDL-BGBP of 14,787 bp in length, was cloned from the mud crab Scylla paramamosain. dLp/HDL-BGBP was predicted to encode a 4,831 amino acids (aa) protein that was the precursor of dLp and HDL-BGBP, which were both detected in hemolymph by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. For the intracellular LLTP, three microsomal triglyceride transfer protein (MTP) cDNAs of 2,905, 2,897, and 3,088 bp in length were cloned from the mud crab and were predicted to encode MTP-A of 881 aa, MTP-B of 889 aa, and MTP-C of 919 aa, respectively, which were different merely in the N-terminal region and shared an identical sequence of 866 aa. During embryonic development, the expression level of dLp/HDL-BGBP consecutively increased from the early appendage formation stage to the eye pigment-formation stage, which indicated that HDL-BGBP is probably the scaffolding protein for yolk lipid. For the MTP gene, MTP-C accounted for ~70% of MTP mRNA from the blastocyst stage to the nauplius stage, as well as the pre-hatching stage; MTP-C and MTP-A expression levels were comparable from the early appendage formation stage to the late eye pigment-formation stage; MTP-A was extremely low in blastocyst and gastrula stages; MTP-B was expressed at a relatively low-level throughout embryo development. The variations in the expression profiles among MTP transcripts suggested that MTP might play roles in the lipid droplet maturation and lipoprotein assembly during embryonic development.
Collapse
Affiliation(s)
- Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- School of Life Sciences, Ningde Normal University, Ningde, China
| | - Liang Lyu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Dousha Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Chunyang Li
- Department of Student Affairs, Ningde Normal University, Ningde, China
| | - Ziping Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
10
|
Zeng X, Wan H, Zhong J, Feng Y, Zhang Z, Wang Y. Large lipid transfer proteins in hepatopancreas of the mud crab Scylla paramamosain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100801. [PMID: 33667756 DOI: 10.1016/j.cbd.2021.100801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
Large lipid transfer proteins (LLTPs) are extensively involved in various physiological processes. In the present study, five LLTP sequences encoding apolipocrustacein 1 (apoCr 1), apoCr 2, precursor of the large discoidal lipoprotein (dLp) and high density lipoprotein/β-glucan binding protein (HDL-BGBP) (dLp-BGBP), microsomal triglyceride transfer protein (MTP) and clotting protein (CP) were identified in the hepatopancreas of Scylla paramamosain. Of these, apoCr 2, dLp-BGBP, and MTP were newly identified in this species, and the former two proteins were classified into the APO family while the later into the MTP family in phylogenetic trees. The apoCr 1 expression level was dramatically increased in the hepatopancreas towards ovarian maturation, which was extremely greater than that in the ovaries concurrently, likely to meet the considerable requirements of yolk protein and lipids for embryo development. The dLp-BGBP expression level in male crabs was comparable to that in female crabs, supporting HDL-BGBP acts as a major circulatory lipid carrier. The close phylogenetic relationship between dLp-BGBP and the scaffolding protein of lipid transfer particle implied dLp might facilitate lipid transfer between the hepatopancreas and HDL-BGBP-containing lipoproteins. The MTP expression level was positively related to ovarian development in both the hepatopancreas and ovaries, indicating MTP may be involved in lipoprotein assembly in the hepatopancreas and lipid droplet maturation in the ovaries. CP may play a crucial role in embryo development based on high expression level observed in the testes of mature crabs. Our findings provide novel insights into LLTP superfamily members and their functions in decapods.
Collapse
Affiliation(s)
- Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China; School of Life Sciences, Ningde Normal University, 1 College Road, Dongqiao Economic and Technological Development Zone, Ningde 352100, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Ziping Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China.
| |
Collapse
|
11
|
Tan L, Cheng M, Auyeung GCT, Chan OYS, Chen X. Mechanistic action of the acute toxicity of Bajitian (Morinda officinalis) in zebrafish embryos. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Engin A. Fat Cell and Fatty Acid Turnover in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:135-160. [PMID: 28585198 DOI: 10.1007/978-3-319-48382-5_6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. Inhibition of adipose triglyceride lipase leads to an accumulation of triglyceride, whereas inhibition of hormone-sensitive lipase leads to the accumulation of diacylglycerol. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride turnover. Excess triacylglycerols (TAGs), sterols and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets. Following the release of lipid droplets from endoplasmic reticulum, cytoplasmic lipid droplets increase their volume either by local TAG synthesis or by homotypic fusion. The number and the size of lipid droplet distribution is correlated with obesity. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. NOD-like receptors family pyrin domain containing 3 (NLRP3) inflammasome-dependent caspase-1 activation in hypertrophic adipocytes induces obese adipocyte death by pyroptosis. Actually adipocyte death may be a prerequisite for the transition from hypertrophic to hyperplastic obesity. Major transcriptional factors, CCAAT/enhancer-binding proteins beta and delta, play a central role in the subsequent induction of critical regulators, peroxisome-proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha and sterol regulatory element-binding protein 1, in the transcriptional control of adipogenesis in obesity.Collectively, in this chapter the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of lipid droplet interactions with the other cellular organelles are reviewed. Furthermore, in addition to lipid droplet growth, the functional link between the adipocyte-specific lipid droplet-associated protein and fatty acid turn-over is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey. .,, Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
13
|
Swift LL, Love JD, Harris CM, Chang BH, Jerome WG. Microsomal triglyceride transfer protein contributes to lipid droplet maturation in adipocytes. PLoS One 2017; 12:e0181046. [PMID: 28793320 PMCID: PMC5549975 DOI: 10.1371/journal.pone.0181046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Previous studies in our laboratory have established the presence of MTP in both white and brown adipose tissue in mice as well as in 3T3-L1 cells. Additional studies demonstrated an increase in MTP levels as 3T3-L1 cells differentiate into adipocytes concurrent with the movement of MTP from the juxtanuclear region of the cell to the surface of lipid droplets. This suggested a role for MTP in lipid droplet biogenesis and/or maturation. To probe the role of MTP in adipocytes, we used a Cre-Lox approach with aP2-Cre and Adipoq-Cre recombinase transgenic mice to knock down MTP expression in brown and white fat of mice. MTP expression was reduced approximately 55% in white fat and 65–80% in brown fat. Reducing MTP expression in adipose tissue had no effect on weight gain or body composition, whether the mice were fed a regular rodent or high fat diet. In addition, serum lipids and unesterified fatty acid levels were not altered in the knockdown mice. Importantly, decreased MTP expression in adipose tissue was associated with smaller lipid droplets in brown fat and smaller adipocytes in white fat. These results combined with our previous studies showing MTP lipid transfer activity is not necessary for lipid droplet initiation or growth in the early stages of differentiation, suggest that a structural feature of the MTP protein is important in lipid droplet maturation. We conclude that MTP protein plays a critical role in lipid droplet maturation, but does not regulate total body fat accumulation.
Collapse
Affiliation(s)
- Larry L. Swift
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Research Service, Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, United States of America
- * E-mail:
| | - Joseph D. Love
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Carla M. Harris
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Benny H. Chang
- Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - W. Gray Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Liu L, Wang G, Xiao Y, Shipp SL, Siegel PB, Cline MA, Gilbert ER. Peripheral neuropeptide Y differentially influences adipogenesis and lipolysis in chicks from lines selected for low or high body weight. Comp Biochem Physiol A Mol Integr Physiol 2017; 213:1-10. [PMID: 28789975 DOI: 10.1016/j.cbpa.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) stimulates appetite and promotes lipid deposition. We demonstrated a differential sensitivity in the food intake response to central NPY in chicks from lines selected for low (LWS) or high (HWS) body weight, but have not reported whether such differences exist in the periphery. At 5days, LWS and HWS chicks were intraperitoneally injected with 0 (vehicle), 60, or 120μg/kg BW NPY and subcutaneous adipose tissue and plasma were collected at 1, 3, 6, 12, and 24h (n=12). NPY injection increased glycerol-3-phosphate dehydrogenase (G3PDH) activity at 1 and 3h and reduced plasma non-esterified fatty acids (NEFAs) at 1 and 12h. G3PDH activity was greater in HWS than LWS while NEFAs were greater in LWS. At 1h, peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein (C/EBP)α, and microsomal triglyceride transfer protein (MTTP) mRNAs were reduced in NPY-injected chicks whereas NPY receptor 1 (NPYR1) was increased. Expression of stearoyl-CoA desaturase (SCD1) was increased by NPY at 1h in HWS but not LWS. PPARγ (3 and 6h), C/EBPβ (3h), C/EBPα (6h) and NPYR1 and 2 (24h) mRNAs were greater in NPY- than vehicle-injected chicks. At several times, adipose triglyceride lipase, MTTP, perilipin 1, NPYR1, and NPYR2 mRNAs were greater in LWS than HWS, while expression of SCD1, glycerol-3-phosphate acyltransferase 3 and lipoprotein lipase was greater in HWS than LWS. Thus, NPY promotes fat deposition and inhibits lipolysis in chicks, with line differences indicative of greater rates of lipolysis in LWS and adipogenesis in HWS.
Collapse
Affiliation(s)
- Lingbin Liu
- Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Guoqing Wang
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Yang Xiao
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Steven L Shipp
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Paul B Siegel
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Mark A Cline
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Elizabeth R Gilbert
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States.
| |
Collapse
|
15
|
Meyers A, Weiskittel TM, Dalhaimer P. Lipid Droplets: Formation to Breakdown. Lipids 2017; 52:465-475. [PMID: 28528432 DOI: 10.1007/s11745-017-4263-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
One of the most exciting areas of cell biology during the last decade has been the study of lipid droplets. Lipid droplets allow cells to store non-polar molecules such as neutral lipids in specific compartments where they are sequestered from the aqueous environment of the cell yet can be accessed through regulated mechanisms. These structures are highly conserved, appearing in organisms throughout the phylogenetic tree. Until somewhat recently, lipid droplets were widely regarded as inert, however progress in the field has continued to demonstrate their vast roles in a number of cellular processes in both mitotic and post-mitotic cells. No doubt the increase in the attention given to lipid droplet research is due to their central role in current pressing human diseases such as obesity, type-2 diabetes, and atherosclerosis. This review provides a mechanistic timeline from neutral lipid synthesis through lipid droplet formation and size augmentation to droplet breakdown.
Collapse
Affiliation(s)
- Alex Meyers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 426 Dougherty Engineering Building, Knoxville, TN, 37996, USA
| | - Taylor M Weiskittel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 426 Dougherty Engineering Building, Knoxville, TN, 37996, USA
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 426 Dougherty Engineering Building, Knoxville, TN, 37996, USA. .,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
16
|
Bou M, Montfort J, Le Cam A, Rallière C, Lebret V, Gabillard JC, Weil C, Gutiérrez J, Rescan PY, Capilla E, Navarro I. Gene expression profile during proliferation and differentiation of rainbow trout adipocyte precursor cells. BMC Genomics 2017; 18:347. [PMID: 28472935 PMCID: PMC5418865 DOI: 10.1186/s12864-017-3728-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Excessive accumulation of adipose tissue in cultured fish is an outstanding problem in aquaculture. To understand the development of adiposity, it is crucial to identify the genes which expression is associated with adipogenic differentiation. Therefore, the transcriptomic profile at different time points (days 3, 8, 15 and 21) along primary culture development of rainbow trout preadipocytes has been investigated using an Agilent trout oligo microarray. RESULTS Our analysis identified 4026 genes differentially expressed (fold-change >3) that were divided into two major clusters corresponding to the main phases observed during the preadipocyte culture: proliferation and differentiation. Proliferation cluster comprised 1028 genes up-regulated from days 3 to 8 of culture meanwhile the differentiation cluster was characterized by 2140 induced genes from days 15 to 21. Proliferation was characterized by enrichment in genes involved in basic cellular and metabolic processes (transcription, ribosome biogenesis, translation and protein folding), cellular remodelling and autophagy. In addition, the implication of the eicosanoid signalling pathway was highlighted during this phase. On the other hand, the terminal differentiation phase was enriched with genes involved in energy production, lipid and carbohydrate metabolism. Moreover, during this phase an enrichment in genes involved in the formation of the lipid droplets was evidenced as well as the activation of the thyroid-receptor/retinoic X receptor (TR/RXR) and the peroxisome proliferator activated receptors (PPARs) signalling pathways. The whole adipogenic process was driven by a coordinated activation of transcription factors and epigenetic modulators. CONCLUSIONS Overall, our study demonstrates the coordinated expression of functionally related genes during proliferation and differentiation of rainbow trout adipocyte cells. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of fish adipogenesis.
Collapse
Affiliation(s)
- Marta Bou
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,Present address: Nofima (Norwegian Institute of Food, Fisheries, and Aquaculture Research), P.O. Box 210, N-1432, Ås, Norway
| | - Jerôme Montfort
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Aurélie Le Cam
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Cécile Rallière
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Véronique Lebret
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Jean-Charles Gabillard
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Claudine Weil
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Pierre-Yves Rescan
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
17
|
Wang SX, Wei JG, Chen LL, Hu X, Kong W. The role of expression imbalance between adipose synthesis and storage mediated by PPAR-γ/FSP27 in the formation of insulin resistance in catch up growth. Lipids Health Dis 2016; 15:173. [PMID: 27716232 PMCID: PMC5050960 DOI: 10.1186/s12944-016-0319-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023] Open
Abstract
Background Catch up growth (CUG) motivated by under-nutrition can lead to insulin resistance (IR) and visceral fat over-accumulation. However, the precise mechanisms on IR induced by adipose tissue changes during CUG remain unresolved. Methods Experimental rats were divided into three groups: normal chow group, catch up growth group and resveratrol administrated group. The whole experiment was carried out in four stages: 4, 6, 8 and 12 weeks. Peroxisome-proliferator activated receptor gamma (PPAR-γ) and fat-specific protein 27 (FSP27) expression level in epididymal adipose tissues (EAT) and subcutaneous adipose tissues (SAT) were detected along with other IR indicators. Results Calorie restriction (CR) significantly increased PPAR-γ expression in EAT while decreased FSP27 expression. During re-feeding, both of the expression of PPAR-γ and FSP27 increased, even FSP27 returned to normal level when CUG for 4 weeks. Although PPAR-γ expression declined slightly at 8 weeks, it was still much stronger than normal chow groups. However, no changes were seen in SAT. Relative insufficiency of FSP27 expression in EAT results in a decrease in lipid storage capacity, causing a series of path physiological changes that led to the formation of IR. Resveratrol inhibited the expression of PPAR-γ and promoted FSP27 expression, thus fundamentally improving IR. Conclusions The imbalance between adipose synthesis and storage mediated by PPAR-γ / FSP27 in the EAT plays a pivotal role in the formation of IR during CUG. Resveratrol can correct fat formation and storage imbalance status by up-regulating FSP27 and down-regulating PPAR-γ expression level, ameliorating insulin sensitivity.
Collapse
Affiliation(s)
- Su-Xing Wang
- The Second Department of Geriatrics, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Jin-Gang Wei
- Department of general surgery, The fifth hospital of Shijiazhuang City, Shijiazhuang, 050024, China
| | - Lu-Lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
18
|
Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci 2016; 54:26-48. [PMID: 27690713 DOI: 10.1080/10408363.2016.1221883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a polygenic disease arising from defects in the clearance of plasma low-density lipoprotein (LDL), which results in extremely elevated plasma LDL cholesterol (LDL-C) and increased risk of atherosclerosis, coronary heart disease, and premature death. Conventional lipid-lowering therapies, such as statins and ezetimibe, are ineffective at lowering plasma cholesterol to safe levels in these patients. Other therapeutic options, such as LDL apheresis and liver transplantation, are inconvenient, costly, and not readily available. Recently, lomitapide was approved by the Federal Drug Administration as an adjunct therapy for the treatment of HoFH. Lomitapide inhibits microsomal triglyceride transfer protein (MTP), reduces lipoprotein assembly and secretion, and lowers plasma cholesterol levels by over 50%. Here, we explain the steps involved in lipoprotein assembly, summarize the role of MTP in lipoprotein assembly, explore the clinical and molecular basis of HoFH, and review pre-clinical studies and clinical trials with lomitapide and other MTP inhibitors for the treatment of HoFH. In addition, ongoing research and new approaches underway for better treatment modalities are discussed.
Collapse
Affiliation(s)
- Meghan T Walsh
- a School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center , Brooklyn , NY , USA.,b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - M Mahmood Hussain
- b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA.,c Department of Pediatrics , SUNY Downstate Medical Center , Brooklyn , NY , USA.,d VA New York Harbor Healthcare System , Brooklyn , NY , USA , and.,e Winthrop University Hospital , Mineola , NY , USA
| |
Collapse
|
19
|
Suzuki T, Swift LL. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues. Sci Rep 2016; 6:27308. [PMID: 27256115 PMCID: PMC4891672 DOI: 10.1038/srep27308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/16/2016] [Indexed: 11/16/2022] Open
Abstract
Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5′-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5′-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Larry L Swift
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Research Service, Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| |
Collapse
|
20
|
Identification of a Novel Transcript and Regulatory Mechanism for Microsomal Triglyceride Transfer Protein. PLoS One 2016; 11:e0147252. [PMID: 26771188 PMCID: PMC4714884 DOI: 10.1371/journal.pone.0147252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/03/2016] [Indexed: 12/19/2022] Open
Abstract
Microsomal triglyceride transfer protein (MTP) is essential for the assembly of triglyceride-rich apolipoprotein B-containing lipoproteins. Previous studies in our laboratory identified a novel splice variant of MTP in mice that we named MTP-B. MTP-B has a unique first exon (1B) located 2.7 kB upstream of the first exon (1A) for canonical MTP (MTP-A). The two mature isoforms, though nearly identical in sequence and function, have different tissue expression patterns. In this study we report the identification of a second MTP splice variant (MTP-C), which contains both exons 1B and 1A. MTP-C is expressed in all the tissues we tested. In cells transfected with MTP-C, protein expression was less than 15% of that found when the cells were transfected with MTP-A or MTP-B. In silico analysis of the 5’-UTR of MTP-C revealed seven ATGs upstream of the start site for MTP-A, which is the only viable start site in frame with the main coding sequence. One of those ATGs was located in the 5’-UTR for MTP-A. We generated reporter constructs in which the 5’-UTRs of MTP-A or MTP-C were inserted between an SV40 promoter and the coding sequence of the luciferase gene and transfected these constructs into HEK 293 cells. Luciferase activity was significantly reduced by the MTP-C 5’-UTR, but not by the MTP-A 5’-UTR. We conclude that alternative splicing plays a key role in regulating MTP expression by introducing unique 5’-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP levels and activity.
Collapse
|
21
|
Bakillah A, Hussain MM. Mice subjected to aP2-Cre mediated ablation of microsomal triglyceride transfer protein are resistant to high fat diet induced obesity. Nutr Metab (Lond) 2016; 13:1. [PMID: 26752997 PMCID: PMC4706691 DOI: 10.1186/s12986-016-0061-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/03/2016] [Indexed: 02/06/2023] Open
Abstract
Background Microsomal triglyceride transfer protein (MTP) is essential for the assembly of lipoproteins. MTP has been shown on the surface of lipid droplets of adipocytes; however its function in adipose tissue is not well defined. We hypothesized that MTP may play critical role in adipose lipid droplet formation and expansion. Methods Plasmids mediated overexpression and siRNA mediated knockdown of Mttp gene were performed in 3T3-L1 pre-adipocytes to evaluate the effects of MTP on cell differentiation and triglyceride accumulation. Adipose-specific knockdown of MTP was achieved in mice bybreeding MTP floxed (Mttpfl/fl) mice with aP2-Cre recombinase transgenic mice. Adipose-specific MTP deficient (A-Mttp-/-) mice were fed 60 % high-fat diet (HFD), and the effects of MTP knockdown on body weight, body fat composition, plasma and tissues lipid composition, glucose metabolism, lipogenesis and intestinal absorption was studied. Lipids were measured in total fasting plasma and size fractionated plasma using colorimetric assays. Gene expression was investigated by Real-Time quantitative PCR. All data was assessed using t-test, ANOVA. Results MTP expression increased during early differentiation in 3T3-L1 cells, and declined later. The increases in MTP expression preceded PPARγ expression. MTP overexpression enhanced lipid droplets formation, and knockdown attenuated cellular lipid accumulation. These studies indicated that MTP positively affects adipogenesis. The ablation of the Mttp gene using aP2-Cre (A-Mttp-/-) in mice resulted in a lean phenotype when fed a HFD. These mice had reduced white adipose tissue compared with wild-type Mttpfl/fl mice. The adipose tissue of A-Mttp-/- mice had increased number of smaller size adipocytes and less macrophage infiltration. Further, these mice were protected from HFD-induced fatty liver. The A-Mttp-/- mice had moderate increase in plasma triglyceride, but normal cholesterol, glucose and insulin levels. Gene expression analysis showed that the adipose tissue of the A-Mttp-/- mice had significantly lower mRNA levels of PPARγ and its downstream targets. Conclusion These data suggest that MTP might modulate adipogenesis by influencing PPARγ expression, and play a role in the accretion of lipids to form larger lipid droplets. Thus, agents that inactivate adipose MTP may be useful anti-obesity drugs.
Collapse
Affiliation(s)
- Ahmed Bakillah
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA ; Department of Pediatrics, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA ; Department of Pediatrics, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA ; VA New York Harbor Healthcare System, Brooklyn, NY 11209 USA
| |
Collapse
|