1
|
de Vicente JC, Lequerica-Fernández P, Rodrigo JP, Rodríguez-Santamarta T, Blanco-Lorenzo V, Prieto-Fernández L, Corte-Torres D, Vallina A, Domínguez-Iglesias F, Álvarez-Teijeiro S, García-Pedrero JM. Lectin-like Transcript-1 (LLT1) Expression in Oral Squamous Cell Carcinomas: Prognostic Significance and Relationship with the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:4314. [PMID: 38673902 PMCID: PMC11050533 DOI: 10.3390/ijms25084314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Lectin-like transcript-1 (LLT1) expression is detected in different cancer types and is involved in immune evasion. The present study investigates the clinical relevance of tumoral and stromal LLT1 expression in oral squamous cell carcinoma (OSCC), and relationships with the immune infiltrate into the tumor immune microenvironment (TIME). Immunohistochemical analysis of LLT1 expression was performed in 124 OSCC specimens, together with PD-L1 expression and the infiltration of CD20+, CD4+, and CD8+ lymphocytes and CD68+ and CD163+-macrophages. Associations with clinicopathological variables, prognosis, and immune cell densities were further assessed. A total of 41 (33%) OSCC samples showed positive LLT1 staining in tumor cells and 55 (44%) positive LLT1 in tumor-infiltrating lymphocytes (TILs). Patients harboring tumor-intrinsic LLT1 expression exhibited poorer survival, suggesting an immunosuppressive role. Conversely, positive LLT1 expression in TILs was significantly associated with better disease-specific survival, and also an immune-active tumor microenvironment highly infiltrated by CD8+ T cells and M1/M2 macrophages. Furthermore, the combination of tumoral and stromal LLT1 was found to distinguish three prognostic categories (favorable, intermediate, and adverse; p = 0.029, Log-rank test). Together, these data demonstrate the prognostic relevance of tumoral and stromal LLT1 expression in OSCC, and its potential application to improve prognosis prediction and patient stratification.
Collapse
Affiliation(s)
- Juan C. de Vicente
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Department of Surgery, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Paloma Lequerica-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain
| | - Juan P. Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Department of Surgery, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Tania Rodríguez-Santamarta
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain; (V.B.-L.); (A.V.)
| | - Llara Prieto-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Daniela Corte-Torres
- Principado de Asturias Biobank, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Aitana Vallina
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain; (V.B.-L.); (A.V.)
- Principado de Asturias Biobank, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Saúl Álvarez-Teijeiro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juana M. García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
2
|
Bláha J, Skálová T, Kalousková B, Skořepa O, Cmunt D, Grobárová V, Pazicky S, Poláchová E, Abreu C, Stránský J, Kovaľ T, Dušková J, Zhao Y, Harlos K, Hašek J, Dohnálek J, Vaněk O. Structure of the human NK cell NKR-P1:LLT1 receptor:ligand complex reveals clustering in the immune synapse. Nat Commun 2022; 13:5022. [PMID: 36028489 PMCID: PMC9418145 DOI: 10.1038/s41467-022-32577-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Signaling by the human C-type lectin-like receptor, natural killer (NK) cell inhibitory receptor NKR-P1, has a critical role in many immune-related diseases and cancer. C-type lectin-like receptors have weak affinities to their ligands; therefore, setting up a comprehensive model of NKR-P1-LLT1 interactions that considers the natural state of the receptor on the cell surface is necessary to understand its functions. Here we report the crystal structures of the NKR-P1 and NKR-P1:LLT1 complexes, which provides evidence that NKR-P1 forms homodimers in an unexpected arrangement to enable LLT1 binding in two modes, bridging two LLT1 molecules. These interaction clusters are suggestive of an inhibitory immune synapse. By observing the formation of these clusters in solution using SEC-SAXS analysis, by dSTORM super-resolution microscopy on the cell surface, and by following their role in receptor signaling with freshly isolated NK cells, we show that only the ligation of both LLT1 binding interfaces leads to effective NKR-P1 inhibitory signaling. In summary, our findings collectively support a model of NKR-P1:LLT1 clustering, which allows the interacting proteins to overcome weak ligand-receptor affinity and to trigger signal transduction upon cellular contact in the immune synapse. NKR-P1 is an inhibitory receptor on the surface of natural killer cells, and its engagement with the ligand LLT1 on activated monocytes and B cells triggers NK cell self-tolerance and other immunological processes. Here authors set up a comprehensive, structure-based model of NKR-P1-LLT1 interaction that involves NKR-P1 homodimer formation and subsequent bridging of two LLT1 molecules.
Collapse
Affiliation(s)
- Jan Bláha
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12800, Prague, Czech Republic.,EMBL, Hamburg Unit c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Tereza Skálová
- Institute of Biotechnology, The Czech Academy of Sciences, BIOCEV Centre, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12800, Prague, Czech Republic.,Institute of Applied Physics - Biophysics group, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12800, Prague, Czech Republic
| | - Denis Cmunt
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12800, Prague, Czech Republic.,Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Samuel Pazicky
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12800, Prague, Czech Republic.,School of Biological Sciences, Nanyang Technological University, Nanyang Drive 60, 637551, Singapore, Singapore
| | - Edita Poláchová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12800, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12800, Prague, Czech Republic
| | - Jan Stránský
- Institute of Biotechnology, The Czech Academy of Sciences, BIOCEV Centre, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Tomáš Kovaľ
- Institute of Biotechnology, The Czech Academy of Sciences, BIOCEV Centre, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Jarmila Dušková
- Institute of Biotechnology, The Czech Academy of Sciences, BIOCEV Centre, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, Oxford, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, Oxford, UK
| | - Jindřich Hašek
- Institute of Biotechnology, The Czech Academy of Sciences, BIOCEV Centre, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology, The Czech Academy of Sciences, BIOCEV Centre, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12800, Prague, Czech Republic.
| |
Collapse
|
3
|
Haynes WA, Haddon DJ, Diep VK, Khatri A, Bongen E, Yiu G, Balboni I, Bolen CR, Mao R, Utz PJ, Khatri P. Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight 2020; 5:122312. [PMID: 31971918 DOI: 10.1172/jci.insight.122312] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that follows an unpredictable disease course and affects multiple organs and tissues. We performed an integrated, multicohort analysis of 7,471 transcriptomic profiles from 40 independent studies to identify robust gene expression changes associated with SLE. We identified a 93-gene signature (SLE MetaSignature) that is differentially expressed in the blood of patients with SLE compared with healthy volunteers; distinguishes SLE from other autoimmune, inflammatory, and infectious diseases; and persists across diverse tissues and cell types. The SLE MetaSignature correlated significantly with disease activity and other clinical measures of inflammation. We prospectively validated the SLE MetaSignature in an independent cohort of pediatric patients with SLE using a microfluidic quantitative PCR (qPCR) array. We found that 14 of the 93 genes in the SLE MetaSignature were independent of IFN-induced and neutrophil-related transcriptional profiles that have previously been associated with SLE. Pathway analysis revealed dysregulation associated with nucleic acid biosynthesis and immunometabolism in SLE. We further refined a neutropoiesis signature and identified underappreciated transcripts related to immune cells and oxidative stress. In our multicohort, transcriptomic analysis has uncovered underappreciated genes and pathways associated with SLE pathogenesis, with the potential to advance clinical diagnosis, biomarker development, and targeted therapeutics for SLE.
Collapse
Affiliation(s)
- Winston A Haynes
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| | - D James Haddon
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Vivian K Diep
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Avani Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Erika Bongen
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Gloria Yiu
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Imelda Balboni
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | - Rong Mao
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| |
Collapse
|
4
|
A Comprehensive Genome-Wide and Phenome-Wide Examination of BMI and Obesity in a Northern Nevadan Cohort. G3-GENES GENOMES GENETICS 2020; 10:645-664. [PMID: 31888951 PMCID: PMC7003082 DOI: 10.1534/g3.119.400910] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aggregation of Electronic Health Records (EHR) and personalized genetics leads to powerful discoveries relevant to population health. Here we perform genome-wide association studies (GWAS) and accompanying phenome-wide association studies (PheWAS) to validate phenotype-genotype associations of BMI, and to a greater extent, severe Class 2 obesity, using comprehensive diagnostic and clinical data from the EHR database of our cohort. Three GWASs of 500,000 variants on the Illumina platform of 6,645 Healthy Nevada participants identified several published and novel variants that affect BMI and obesity. Each GWAS was followed with two independent PheWASs to examine associations between extensive phenotypes (incidence of diagnoses, condition, or disease), significant SNPs, BMI, and incidence of extreme obesity. The first GWAS examines associations with BMI in a cohort with no type 2 diabetics, focusing exclusively on BMI. The second GWAS examines associations with BMI in a cohort that includes type 2 diabetics. In the second GWAS, type 2 diabetes is a comorbidity, and thus becomes a covariate in the statistical model. The intersection of significant variants of these two studies is surprising. The third GWAS is a case vs. control study, with cases defined as extremely obese (Class 2 or 3 obesity), and controls defined as participants with BMI between 18.5 and 25. This last GWAS identifies strong associations with extreme obesity, including established variants in the FTO and NEGR1 genes, as well as loci not yet linked to obesity. The PheWASs validate published associations between BMI and extreme obesity and incidence of specific diagnoses and conditions, yet also highlight novel links. This study emphasizes the importance of our extensive longitudinal EHR database to validate known associations and identify putative novel links with BMI and obesity.
Collapse
|
5
|
Thude H, Rother S, Sterneck M, Klempnauer J, Nashan B, Schwinzer R, Koch M. The killer cell lectin-like receptor B1 (KLRB1) 503T>C polymorphism (rs1135816) and acute rejection after liver transplantation. HLA 2019; 91:52-55. [PMID: 29111570 DOI: 10.1111/tan.13172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
The killer cell lectin-like receptor B1 (KLRB1) gene encodes for CD161 expressed by different subsets of leukocytes involved in the development of acute liver transplant rejection. The single nucleotide polymorphism (SNP) 503T>C (rs1135816) in the KLRB1 gene represents a missense mutation modifying functional properties of CD161. The aim of our study is to determine whether the SNP 503T>C is associated with acute liver transplant rejection. We genotyped the SNP for 163 liver recipients without acute rejection, 125 recipients with a single acute rejection, and 53 recipients with multiple acute rejections. The genotype frequencies within the groups did not show any significant difference. Our data suggest that the SNP 503T>C has no impact on the susceptibility of acute liver transplant rejection.
Collapse
Affiliation(s)
- H Thude
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Rother
- Department of General, Visceral and Transplantation Surgery, Transplant Laboratory, Hannover Medical School, Hannover, Germany
| | - M Sterneck
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Klempnauer
- Department of General, Visceral and Transplantation Surgery, Transplant Laboratory, Hannover Medical School, Hannover, Germany
| | - B Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - R Schwinzer
- Department of General, Visceral and Transplantation Surgery, Transplant Laboratory, Hannover Medical School, Hannover, Germany
| | - M Koch
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv 2017; 1:577-589. [PMID: 29296700 DOI: 10.1182/bloodadvances.2016002352] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/13/2017] [Indexed: 01/11/2023] Open
Abstract
Innate lymphoid cells (ILCs) represent a distinct branch of the lymphoid lineage composed of 3 major subpopulations: ILC1, ILC2, and ILC3. ILCs are mainly described as tissue-resident cells but can be detected at low levels in human blood. However, unlike mouse ILCs, there is still no consistent methodology to purify and culture these cells that enables in-depth analysis of their intrinsic biology. Here, we describe defined culture conditions for ILC2s, which allowed us to dissect the roles of interleukin 2 (IL-2), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) individually, or in combination, in modulating ILC2 phenotype and function. We show that TSLP is important for ILC2 survival, while ILC2 activation is more dependent on IL-33, especially when in combination with IL-2 or TSLP. We found that activation of ILC2s by IL-33 and TSLP dramatically upregulated their surface expression of c-Kit and downregulated expression of the canonical markers IL-7Rα and CRTH2. IL-2 further amplified ILC2 production of IL-5, IL-13, and granulocyte-macrophage colony-stimulating factor but also induced a more natural killer (NK)-like phenotype in ILC2, with upregulation of granzyme B production by these cells. Furthermore, ILC2 plasticity was observed in serum-free SFEM II media in response to IL-33, IL-25, and TSLP stimulation and independently of IL-12 and IL-1β. This is the first comprehensive report of an in vitro culture system for human ILC2s, without the use of feeder layers, which additionally evaluates the impact of IL-25, IL-33, and TSLP alone or in combination on ILC2 surface phenotype and activation status.
Collapse
|