1
|
Li Q, Zhu JJ. Expression Levels of miR-181 Family Members in Oral Biofluids as Biomarkers for Periodontitis Severity. TOHOKU J EXP MED 2024; 264:121-130. [PMID: 38960640 DOI: 10.1620/tjem.2024.j058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
This study aimed to assess the diagnostic potential of microRNA-181 (miR-181) family members in oral biofluids, namely saliva and gingival crevicular fluid (GCF), as biomarkers for periodontitis severity. A cohort of 150 patients with periodontitis, including 82 with mild to moderate and 68 with advanced periodontitis, along with 90 healthy controls, were recruited. Analysis of miR-181 family expression using quantitative real-time polymerase chain reaction (qRT-PCR) revealed differential expression levels in oral biofluids among the study groups. Salivary miRNAs, particularly miR-181a, displayed significant discriminatory ability in distinguishing periodontitis patients from healthy controls and between different stages of periodontitis severity, with high sensitivity and moderate to high specificity. In GCF samples, miR-181a and miR-181b exhibited robust discriminatory ability, while miR-181c showed moderate discriminatory ability. Conversely, miR-181d demonstrated lower discriminatory power in both saliva and GCF. Additionally, combination diagnosis using miR-181 family showed superior performance compared to individual miRNAs. Furthermore, enzyme-linked immunosorbent assay (ELISA) analysis of inflammatory biomarkers (TNF-α, IL-6, and IL-1β) in GCF revealed elevated levels in periodontitis patients compared to healthy controls, with a further increase observed in advanced periodontitis. Spearman correlation analysis demonstrated a significant negative correlation between miR-181 family expression in GCF and inflammatory biomarker levels, indicating their potential role in modulating periodontal inflammation. Overall, these findings suggest that miR-181 family members in oral biofluids, particularly saliva, hold promise as diagnostic biomarkers for periodontitis severity. Additionally, their negative correlation with inflammatory biomarkers highlights their potential as modulators of periodontal inflammation, providing valuable insights into the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Qun Li
- Department of Stomatology, China Resources and WISCO General Hospital
| | - Jin-Juan Zhu
- Department of Stomatology, China Resources and WISCO General Hospital
| |
Collapse
|
2
|
Khan S, Zhang DY, Zhang JY, Hayat MK, Ren J, Nasir S, Fawad M, Bai Q. The Key Role of microRNAs in Initiation and Progression of Hepatocellular Carcinoma. Front Oncol 2022; 12:950374. [PMID: 35924150 PMCID: PMC9341471 DOI: 10.3389/fonc.2022.950374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the main type of primary liver malignancy and the fourth leading cause of cancer-related death worldwide. MicroRNAs (miRNAs), a type of non-coding RNA that regulates gene expression mainly on post-transcriptional level has a confirmed and important role in numerous biological process. By regulating specific target genes, miRNA can act as oncogene or tumor suppressor. Recent evidence has indicated that the deregulation of miR-NAs is closely associated with the clinical pathological features of HCC. However, the precise regulatory mechanism of each miRNA and its targets in HCC has yet to be illuminated. This study demonstrates that both oncogenic and tumor suppressive miRNAs are crucial in the formation and development of HCC. miRNAs influence biological behavior including proliferation, invasion, metastasis and apoptosis by targeting critical genes. Here, we summarize current knowledge about the expression profile and function of miRNAs in HCC and discuss the potential for miRNA-based therapy for HCC.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - De-Yu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji-Yu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mian Khizar Hayat
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adopations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingli Ren
- Zhengzhou Key Laboratory of Big Data Analysis and Application, Henan Academy of Big Data, Zhengzhou University, Zhengzhou, China
| | - Safyan Nasir
- Allied District Headquarter Hospital, Faisalabad, Pakistan
| | - Muhammad Fawad
- Zhengzhou Key Laboratory of Big Data Analysis and Application, Henan Academy of Big Data, Zhengzhou University, Zhengzhou, China
- School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China
- *Correspondence: Muhammad Fawad, ; Qian Bai,
| | - Qian Bai
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Muhammad Fawad, ; Qian Bai,
| |
Collapse
|
3
|
Zheng B, Wang H, Cui G, Guo Q, Si L, Yan H, Fang D, Jiang L, Jiang Z, Zhou J. ERG-Associated lncRNA (ERGAL) Promotes the Stability and Integrity of Vascular Endothelial Barrier During Dengue Viral Infection via Interaction With miR-183-5p. Front Cell Infect Microbiol 2020; 10:477. [PMID: 33014896 PMCID: PMC7506072 DOI: 10.3389/fcimb.2020.00477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) continues to be a major public health problem. DENV infection will cause mild dengue and severe dengue. Severe dengue is clinically manifested as serious complications, including dengue hemorrhagic fever and/or dengue shock syndrome (DHF/DSS), which is mainly characterized by vascular leakage. Currently, the pathogenesis of severe dengue is not elucidated thoroughly, and there are no known therapeutic targets for controlling the disease effectively. This study aimed to further reveal the potential molecular mechanism of severe dengue. In this study, the long non-coding RNA, ERG-associated lncRNA (lncRNA-ERGAL), was activated and significantly up-regulated in DENV-infected vascular endothelial cells. After knockdown of lncRNA-ERGAL, the expression of ERG, VE-cadherin, and claudin-5 was repressed; besides, cell apoptosis was enhanced, and cytoskeletal remodeling was disordered, leading to instability and increased permeability of vascular endothelial barrier during DENV infection. Fluorescence in situ hybridization (FISH) assay showed lncRNA-ERGAL to be mainly expressed in the cytoplasm. Moreover, the expression of miR-183-5p was found to increase during DENV infection and revealed to regulate ERG, junction-associated proteins, and the cytoskeletal structure after overexpression and knockdown. Then, ERGAL was confirmed to interact with miR-183-5p by luciferase reporter assay. Collectively, ERGAL acted as a miRNA sponge that can promote stability and integrity of vascular endothelial barrier during DENV infection via binding to miR-183-5p, thus revealing the potential molecular mechanism of severe dengue and providing a foundation for a promising clinical target in the future.
Collapse
Affiliation(s)
- Baojia Zheng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, China
| | - Hui Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, China
| | - Guohui Cui
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Medical Microbiology, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, China
| | - Qianfang Guo
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Medical Microbiology, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, China
| | - Lulu Si
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Medical Microbiology, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, China
| | - Huijun Yan
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Medical Microbiology, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, China
| | - Danyun Fang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Medical Microbiology, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, China
| | - Lifang Jiang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Medical Microbiology, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, China
| | - Junmei Zhou
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Medical Microbiology, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Gruzdev SK, Yakovlev AA, Druzhkova TA, Guekht AB, Gulyaeva NV. The Missing Link: How Exosomes and miRNAs can Help in Bridging Psychiatry and Molecular Biology in the Context of Depression, Bipolar Disorder and Schizophrenia. Cell Mol Neurobiol 2019; 39:729-750. [PMID: 31089834 PMCID: PMC11462851 DOI: 10.1007/s10571-019-00684-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) only recently have been recognized as promising molecules for both fundamental and clinical neuroscience. We provide a literature review of miRNA biomarker studies in three most prominent psychiatric disorders (depression, bipolar disorder and schizophrenia) with the particular focus on depression due to its social and healthcare importance. Our search resulted in 191 unique miRNAs across 35 human studies measuring miRNA levels in blood, serum or plasma. 30 miRNAs replicated in more than one study. Most miRNAs targeted neuroplasticity and neurodevelopment pathways. Various limitations do not allow us to make firm conclusions on clinical potential of studied miRNAs. Based on our results we discuss the rationale for future research investigations of exosomal mechanisms to overcome methodological caveats both in studying etiology and pathogenesis, and providing an objective back-up for clinical decisions.
Collapse
Affiliation(s)
- S K Gruzdev
- Institute of Medicine, RUDN University, Miklukho-Maklaya Str. 6, Moscow, Russia, 117198.
| | - A A Yakovlev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5A, Moscow, Russia, 117485
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| | - T A Druzhkova
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| | - A B Guekht
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
- Russian National Research Medical University, Ostrovitianov Str. 1, Moscow, Russia, 117997
| | - N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5A, Moscow, Russia, 117485
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| |
Collapse
|
5
|
Schumann CM, Sharp FR, Ander BP, Stamova B. Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain. Mol Autism 2017; 8:4. [PMID: 28184278 PMCID: PMC5294827 DOI: 10.1186/s13229-017-0117-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is sexually dimorphic in brain structure, genetics, and behaviors. In studies of brain tissue, the age of the population is clearly a factor in interpreting study outcome, yet sex is rarely considered. To begin to address this issue, we extend our previously published microarray analyses to examine expression of small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), in ASD and in the control temporal cortex in males and females. Predicted miRNA targets were identified as well as the pathways they overpopulate. Findings After considering age, sexual dimorphism in ASD sncRNA expression persists in the temporal cortex and in the patterning that distinguishes regions. Among the sexually dimorphic miRNAs are miR-219 and miR-338, which promote oligodendrocyte differentiation, miR-125, implicated in neuronal differentiation, and miR-488, implicated in anxiety. Putative miRNA targets are significantly over-represented in immune and nervous system pathways in both sexes, consistent with previous mRNA studies. Even for common pathways, the specific target mRNAs are often sexually dimorphic. For example, both male and female target genes significantly populate the Axonal Guidance Signaling pathway, yet less than a third of the targets are common to both sexes. Conclusions Our findings of sexual dimorphism in sncRNA levels underscore the importance of considering sex, in addition to age, when interpreting molecular findings on ASD brain. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0117-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA.,MIND Institute, University of California, 2805 50th Street, Sacramento, CA 95817 USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|