1
|
Seddiek H, Hanna M, Hamoud AEM, Elbaset MA, Akabawy AMA, Kotb MZ, Khalifa MM. Deferiprone ameliorates cisplatin induced peripheral neurotoxicity via ferritinophagy adjustment. Sci Rep 2025; 15:4485. [PMID: 39915547 PMCID: PMC11802739 DOI: 10.1038/s41598-025-87628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Cisplatin-induced neurotoxicity is one of the limiting factors to its use especially in tumors that demand high drug dosage. One of the Cisplatin pathways is ferritinophagy which may end up in ferroptosis. So, we aimed to use iron chelator as a new strategy based on an anti-ferroptotic mechanism and to evaluate its neuroprotective effect against polyneuropathy in Cisplatin-treated rats. Twenty-four male Wistar albino rats were arranged into four groups: (I) Control group, rats were given vehicle; (II) Def group, rats received deferiprone (200 mg/kg orally once daily for 10 days); (III) Cis group, rats were injected by Cis 2 mg/Kg once daily for 3 consecutive days i.p.; and (IV) Cis + Def group, rats received deferiprone (200 mg/kg orally once daily for 10 days, rats were injected with Cis in the 4th, 5th, and 6th days). Cis increased and upregulated ferritinophagy inducers significantly including MDA, NCOA4, and IREB1 as compared to the control group. On the other hand, GSH, GPX4, SLCA11 and FTH1 were decreased and down regulated significantly compared to the control group. In addition to significant deterioration in the histopathological and immunological nerve tissue assessment using silver stain and PNCA. Embracing the cisplatin dosage with deferiprone reversed cisplatin-induced neuropathy, in which the physiological function significantly improved along with the immune and histopathology of nerve tissue. This was accompanied by down regulation of ferritinophagy inducers and enhancing ferritinophagy inhibitors. The current results concluded that rapping cisplatin with deferiprone can mitigate neurotoxicity induced by cisplatin in experimental animals through ferritinophagy pathway adjustment.
Collapse
Affiliation(s)
- Hanan Seddiek
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt.
| | | | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ahmed M A Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Mohamed Zakaria Kotb
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
- Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Roberts LJ, Szmulewicz DJ. A patient with neuropathy and ataxia: what do I have to consider? Curr Opin Neurol 2023; 36:382-387. [PMID: 37639448 DOI: 10.1097/wco.0000000000001200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW An increasing number of peripheral neuro(no)pathies are identified as involving other components of the neurological system, particularly those that further impair balance. Here we aim to outline an evidence-based approach to the diagnosis of patients who present with a somatosensory disorder which also involves at least one other area of neurological impairment such as the vestibular, auditory, or cerebellar systems. RECENT FINDINGS Detailed objective investigation of patients who present with sensory impairment, particularly where the degree of imbalance is greater than would be expected, aids the accurate diagnosis of genetic, autoimmune, metabolic, and toxic neurological disease. SUMMARY Diagnosis and management of complex somatosensory disorders benefit from investigation which extends beyond the presenting sensory impairment.
Collapse
Affiliation(s)
- Leslie J Roberts
- Neurophysiology Department, Department of Neurology & Neurological Research, St Vincent's Hospital, Department of Medicine, the University of Melbourne
| | - David J Szmulewicz
- Balance Disorders and Ataxia Service, Eye and Ear Hospital
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Murphy KT, Lynch GS. Impaired skeletal muscle health in Parkinsonian syndromes: clinical implications, mechanisms and potential treatments. J Cachexia Sarcopenia Muscle 2023; 14:1987-2002. [PMID: 37574254 PMCID: PMC10570091 DOI: 10.1002/jcsm.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/27/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
There is increasing evidence that neurodegenerative disorders including the Parkinsonian syndromes are associated with impaired skeletal muscle health, manifesting as wasting and weakness. Many of the movement problems, lack of muscle strength and reduction in quality of life that are characteristic of these syndromes can be attributed to impairments in skeletal muscle health, but this concept has been grossly understudied and represents an important area of unmet clinical need. This review describes the changes in skeletal muscle health in idiopathic Parkinson's disease and in two atypical Parkinsonian syndromes, the most aggressive synucleinopathy multiple system atrophy, and the tauopathy progressive supranuclear palsy. The pathogenesis of the skeletal muscle changes is described, including the contribution of impairments to the central and peripheral nervous system and intrinsic alterations. Pharmacological interventions targeting the underlying molecular mechanisms with therapeutic potential to improve skeletal muscle health in affected patients are also discussed. Although little is known about the mechanisms underlying these conditions, current evidence implicates multiple pathways and processes, highlighting the likely need for combination therapies to protect muscle health and emphasizing the merit of personalized interventions for patients with different physical capacities at different stages of their disease. As muscle fatigue is often experienced by patients prior to diagnosis, the identification and measurement of this symptom and related biomarkers to identify early signs of disease require careful interrogation, especially for multiple system atrophy and progressive supranuclear palsy where diagnosis is often made several years after onset of symptoms and only confirmed post-mortem. We propose a multidisciplinary approach for early diagnosis and implementation of personalized interventions to preserve muscle health and improve quality of life for patients with typical and atypical Parkinsonian syndromes.
Collapse
Affiliation(s)
- Kate T. Murphy
- Department of Anatomy and Physiology, Centre for Muscle ResearchThe University of MelbourneMelbourneAustralia
| | - Gordon S. Lynch
- Department of Anatomy and Physiology, Centre for Muscle ResearchThe University of MelbourneMelbourneAustralia
| |
Collapse
|
4
|
Bougea A, Stefanis L. microRNA and circRNA in Parkinson's Disease and atypical parkinsonian syndromes. Adv Clin Chem 2023; 115:83-133. [PMID: 37673523 DOI: 10.1016/bs.acc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are atypical parkinsonian syndromes (APS) with various clinical phenotypes and considerable clinical overlap with idiopathic Parkinson's disease (iPD). This disease heterogeneity makes ante-mortem diagnosis extremely challenging with up to 24% of patients misdiagnosed. Because diagnosis is predominantly clinical, there is great interest in identifying biomarkers for early diagnosis and differentiation of the different types of parkinsonism. Compared to protein biomarkers, microRNAs (miRNAs) and circularRNAs (circRNAs) are stable tissue-specific molecules that can be accurately measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). This chapter critically reviews miRNAs and circRNAs as diagnostic biomarkers and therapeutics to differentiate atypical parkinsonian disorders and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Leonidas Stefanis
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
6
|
Jaques CS, Escorcio-Bezerra ML, Pedroso JL, Barsottini OGP. The Intersection Between Cerebellar Ataxia and Neuropathy: a Proposed Classification and a Diagnostic Approach. THE CEREBELLUM 2021; 21:497-513. [PMID: 34368935 DOI: 10.1007/s12311-021-01275-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Neuropathy is a common associated feature of different types of genetic or sporadic cerebellar ataxias. The pattern of peripheral nerve involvement and its associated clinical features can be an invaluable aspect for narrowing the etiologic diagnosis in the investigation of cerebellar ataxias. In this review, we discuss the differential diagnosis of the intersection between peripheral nerve and cerebellar involvement, and classify them in accordance with the predominant features. Genetics, clinical features, neuroimaging, and neurophysiologic characteristics are discussed. Furthermore, a diagnostic approach for cerebellar ataxia with neuropathy is proposed according to the different clinical characteristics. This is an Educational and Descriptive review with the aim of medical education for the approach to the patients with cerebellar ataxia and neuropathy. The diagnostic approach to the patient with cerebellar ataxia with neuropathy requires a detailed medical history, phenotyping, characterization of disease progression and family history. Neuroimaging features and the neurophysiological findings play pivotal roles in defining the diagnosis. Establishing an organized classification method for the disorders based on the clinical features may be very helpful, and could be divided as those with predominant cerebellar features, predominant neuropathic feature, or conditions with both cerebellar ataxia and neuropathy. Second, determining the mode of inheritance is critical on cerebellar ataxias: autosomal dominant and recessive cerebellar ataxias, mitochondrial or sporadic types. Third, one must carefully assess neurophysiologic findings in order to better characterize the predominant pattern of involvement: damage location, mechanism of lesion (axonal or demyelinating), motor, sensory or sensory motor compromise, large or small fibers, and autonomic system abnormalities.
Collapse
Affiliation(s)
- Cristina Saade Jaques
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Pedro de Toledo Street, São Paulo, SP, 650, 04023-900, Brazil
| | - Marcio Luiz Escorcio-Bezerra
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Pedro de Toledo Street, São Paulo, SP, 650, 04023-900, Brazil
| | - José Luiz Pedroso
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Pedro de Toledo Street, São Paulo, SP, 650, 04023-900, Brazil.
| | - Orlando Graziani Povoas Barsottini
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Pedro de Toledo Street, São Paulo, SP, 650, 04023-900, Brazil
| |
Collapse
|
7
|
Prevalence and Characteristics of Polyneuropathy in Atypical Parkinsonian Syndromes: An Explorative Study. Brain Sci 2021; 11:brainsci11070879. [PMID: 34209067 PMCID: PMC8301815 DOI: 10.3390/brainsci11070879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Peripheral nerve involvement is increasingly recognized in Parkinson's disease (PD). Although non-motor symptoms and postural instability are early features of atypical parkinsonian syndromes (APS), peripheral neuropathies in APS have not been addressed in detail thus far. Therefore, the aim of this study was to investigate the prevalence and characteristics of polyneuropathies (PNP) in multiple system atrophy (MSA) and progressive supranuclear palsy (PSP), as representative syndromes of APS. (2) Methods: In total, 8 MSA and 6 PSP patients were comprehensively analyzed regarding subjective, clinical (motor and non-motor) and paraclinical PNP features using nerve conduction studies and high resolution nerve ultrasounds (HRUS). (3) Results: A total of 87.5% of MSA and 66.7% of PSP patients complained of at least one neuropathic symptom, with electrophysiological confirmation of PNP in 50.0% of both, MSA and PSP patients. PNP symptom severity in PSP and motor nerve amplitude in MSA were associated with compromised motor function. Morphologic nerve examination by HRUS showed few alterations according to the axonal type of PNP. (4) Conclusions: The overall high PNP symptom burden may be partially credited to the significant prevalence of electrophysiologically diagnosed PNP, and impact motor aspects of APS. The findings of this exploratory study reinforce further investigations on a larger scale, in order to elucidate peripheral nerve involvement and the underlying pathophysiological mechanisms of APS.
Collapse
|
8
|
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders characterized by gradual progressive neuronal loss in the central nervous system. Unfortunately, the pathogenesis of many of these diseases remains unknown. Synucleins are a family of small, highly charged proteins expressed predominantly in neurons. Following their discovery, much has been learned about their structure, function, interaction with other proteins and role in neurodegenerative disease over the last two decades. One of these proteins, α-Synuclein (α-Syn), appears to be involved in many neurodegenerative disorders. These include Parkinson's disease (PD), dementia with Lewy bodies (DLB), Rapid Eye Movement Sleep Behavior Disorder (RBD) and Pure Autonomic Failure (PAF), i.e., collectively termed α-synucleinopathies. This review focuses on α-Syn dysfunction in neurodegeneration and assesses its role in synucleinopathies from a biochemical, genetic and neuroimaging perspective.
Collapse
Affiliation(s)
- Anastasia Bougea
- Neurochemistry Laboratory, 1st Department of Neurology and Movement Disorders, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Neuroscience Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to provide a contemporary review of sleep issues affecting patients with multiple system atrophy (MSA). RECENT FINDINGS Prodromal symptoms of MSA may occur years prior to diagnosis, including autonomic dysfunction such as orthostatic hypotension, urogenital dysfunction, rapid eye movement (REM) sleep behavior disorder (RBD), and stridor. Patients may also develop sleep-related respiratory disorders such as obstructive sleep apnea (OSA), central sleep apnea (CSA), and stridor. The development of stridor is associated with a shortened lifespan and sudden death, which may be further accelerated by autonomic instability. MSA appears to follow a 'prion-like' disease progression. SUMMARY MSA is a rapidly progressive neurodegenerative disease characterized by a combination of autonomic failure and motor symptoms. MSA is often misdiagnosed as the initial presentation mimics other neurodegenerative disorders. There are diagnostic criteria to identify possible, probable, and definite MSA. Prodromal symptoms may occur years prior to diagnosis, including autonomic dysfunction such as orthostatic hypotension, urogenital dysfunction, REM RBD, and stridor. In previous years, treatment consisted of tracheostomy but did not address the component of CSA, which commonly coexisted or developed later because of destruction of medullary chemoreceptors. Positive airway pressure may be as effective as tracheostomy alone in ameliorating obstruction at the vocal cord level.
Collapse
|
10
|
Dominik N, Galassi Deforie V, Cortese A, Houlden H. CANVAS: a late onset ataxia due to biallelic intronic AAGGG expansions. J Neurol 2020; 268:1119-1126. [PMID: 32910249 PMCID: PMC7914193 DOI: 10.1007/s00415-020-10183-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022]
Abstract
The ataxias are a group of disorders that manifest with balance, movement, speech and visual problems. They can arise due to dysfunction of the cerebellum, the vestibular system and/or the sensory neurons. Genetic defects are a common cause of chronic ataxia, particularly common are repeat expansions in this group of conditions. Co-occurrence of cerebellar ataxia with neuropathy and vestibular areflexia syndrome has been termed CANVAS. Although CANVAS is a rare syndrome, on discovery of biallelic expansions in the second intron of replication factor C subunit 1 (RFC1) gene, we and others have found the phenotype is broad and RFC1 expansions are a common cause of late-onset progressive ataxia.We aim to provide a review and update on recent developments in CANVAS and populations, where the disorder has been reported. We have also optimised a protocol for RFC1 expansion screening which is described herein and expanded phenotype after analysing late-onset ataxia patients from around the world.
Collapse
Affiliation(s)
- Natalia Dominik
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Valentina Galassi Deforie
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Andrea Cortese
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
11
|
Chelban V, Catereniuc D, Aftene D, Gasnas A, Vichayanrat E, Iodice V, Groppa S, Houlden H. An update on MSA: premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J Neurol 2020; 267:2754-2770. [PMID: 32436100 PMCID: PMC7419367 DOI: 10.1007/s00415-020-09881-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/27/2023]
Abstract
In this review, we describe the wide clinical spectrum of features that can be seen in multiple system atrophy (MSA) with a focus on the premotor phase and the non-motor symptoms providing an up-to-date overview of the current understanding in this fast-growing field. First, we highlight the non-motor features at disease onset when MSA can be indistinguishable from pure autonomic failure or other chronic neurodegenerative conditions. We describe the progression of clinical features to aid the diagnosis of MSA early in the disease course. We go on to describe the levels of diagnostic certainty and we discuss MSA subtypes that do not fit into the current diagnostic criteria, highlighting the complexity of the disease as well as the need for revised diagnostic tools. Second, we describe the pathology, clinical description, and investigations of cardiovascular autonomic failure, urogenital and sexual dysfunction, orthostatic hypotension, and respiratory and REM-sleep behavior disorders, which may precede the motor presentation by months or years. Their presence at presentation, even in the absence of ataxia and parkinsonism, should be regarded as highly suggestive of the premotor phase of MSA. Finally, we discuss how the recognition of the broader spectrum of clinical features of MSA and especially the non-motor features at disease onset represent a window of opportunity for disease-modifying interventions.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova.
| | - Daniela Catereniuc
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
| | - Daniela Aftene
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
| | - Alexandru Gasnas
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
- Cerebrovascular Diseases and Epilepsy Laboratory, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
| | - Ekawat Vichayanrat
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, WC1N 3BG, UK
| | - Valeria Iodice
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, WC1N 3BG, UK
| | - Stanislav Groppa
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
| | - Henry Houlden
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
12
|
Jellinger KA. Multiple system atrophy - a clinicopathological update. FREE NEUROPATHOLOGY 2020; 1:17. [PMID: 37283673 PMCID: PMC10209915 DOI: 10.17879/freeneuropathology-2020-2813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 06/08/2023]
Abstract
Multiple system atrophy (MSA) is a fatal, adult-onset neurodegenerative disorder of uncertain etiology, clinically characterized by various combinations of Levo-dopa-unresponsive parkinsonism, and cerebellar, motor, and autonomic dysfunctions. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, autonomic and peripheral nervous systems. The pathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein (αSyn) in both glia (mainly oligodendroglia) and neurons forming pathological inclusions that cause cell dysfunction and demise. The major variants are striatonigral degeneration (MSA with predominant parkinsonism / MSA-P) and olivopontocerebellar atrophy (MSA with prominent cerebellar ataxia / MSA-C). However, the clinical and pathological features of MSA are broader than previously considered. Studies in various mouse models and human patients have helped to better understand the molecular mechanisms that underlie the progression of the disease. The pathogenesis of MSA is characterized by propagation of disease-specific strains of αSyn from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunctions, myelin dysregulation, neuroinflammation, decreased neurotrophic factors, and energy failure. The combination of these mechanisms results in neurodegeneration with widespread demyelination and a multisystem involvement that is specific for MSA. Clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers. Cognitive impairment, which has been a non-supporting feature of MSA, is not uncommon, while severe dementia is rare. Despite several pharmacological approaches in MSA models, no effective disease-modifying therapeutic strategies are currently available, although many clinical trials targeting disease modification, including immunotherapy and combined approaches, are under way. Multidisciplinary research to elucidate the genetic and molecular background of the noxious processes as the basis for development of an effective treatment of the hitherto incurable disorder are urgently needed.
Collapse
|
13
|
Fanciulli A, Stankovic I, Krismer F, Seppi K, Levin J, Wenning GK. Multiple system atrophy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:137-192. [PMID: 31779811 DOI: 10.1016/bs.irn.2019.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple system atrophy (MSA) is a sporadic, adult-onset, relentlessly progressive neurodegenerative disorder, clinically characterized by various combinations of autonomic failure, parkinsonism and ataxia. The neuropathological hallmark of MSA are glial cytoplasmic inclusions consisting of misfolded α-synuclein. Selective atrophy and neuronal loss in striatonigral and olivopontocerebellar systems underlie the division into two main motor phenotypes of MSA-parkinsonian type and MSA-cerebellar type. Isolated autonomic failure and REM sleep behavior disorder are common premotor features of MSA. Beyond the core clinical symptoms, MSA manifests with a number of non-motor and motor features. Red flags highly specific for MSA may provide clues for a correct diagnosis, but in general the diagnostic accuracy of the second consensus criteria is suboptimal, particularly in early disease stages. In this chapter, the authors discuss the historical milestones, etiopathogenesis, neuropathological findings, clinical features, red flags, differential diagnosis, diagnostic criteria, imaging and other biomarkers, current treatment, unmet needs and future treatments for MSA.
Collapse
Affiliation(s)
| | - Iva Stankovic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Vidal-Martinez G, Segura-Ulate I, Yang B, Diaz-Pacheco V, Barragan JA, De-Leon Esquivel J, Chaparro SA, Vargas-Medrano J, Perez RG. FTY720-Mitoxy reduces synucleinopathy and neuroinflammation, restores behavior and mitochondria function, and increases GDNF expression in Multiple System Atrophy mouse models. Exp Neurol 2019; 325:113120. [PMID: 31751571 DOI: 10.1016/j.expneurol.2019.113120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/25/2022]
Abstract
Multiple system atrophy (MSA) is a fatal disorder with no effective treatment. MSA pathology is characterized by α-synuclein (aSyn) accumulation in oligodendrocytes, the myelinating glial cells of the central nervous system (CNS). aSyn accumulation in oligodendrocytes forms the pathognomonic glial cytoplasmic inclusions (GCIs) of MSA. MSA aSyn pathology is also associated with motor and autonomic dysfunction, including an impaired ability to sweat. MSA patients have abnormal CNS expression of glial-cell-line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Our prior studies using the parent compound FTY720, a food and drug administration (FDA) approved immunosuppressive for multiple sclerosis, reveal that FTY720 protects parkinsonian mice by increasing BDNF. Our FTY720-derivative, FTY720-Mitoxy, is known to increase expression of oligodendrocyte BDNF, GDNF, and nerve growth factor (NGF) but does not reduce levels of circulating lymphocytes as it is not phosphorylated so cannot modulate sphingosine 1 phosphate receptors (S1PRs). To preclinically assess FTY720-Mitoxy for MSA, we used mice expressing human aSyn in oligodendrocytes under a 2,' 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter. CNP-aSyn transgenic (Tg) mice develop motor dysfunction between 7 and 9 mo, and progressive GCI pathology. Using liquid chromatography-mass spectrometry (LC-MS/MS) and enzymatic assays, we confirmed that FTY720-Mitoxy was stable and active. Vehicle or FTY720-Mitoxy (1.1 mg/kg/day) was delivered to wild type (WT) or Tg littermates from 8.5-11.5 mo by osmotic pump. We behaviorally assessed their movement by rotarod and sweat production by starch‑iodine test. Postmortem tissues were evaluated by qPCR for BDNF, GDNF, NGF and GDNF-receptor RET mRNA and for aSyn, BDNF, GDNF, and Iba1 protein by immunoblot. MicroRNAs (miRNAs) were also assessed by qPCR. FTY720-Mitoxy normalized movement, sweat function and soleus muscle mass in 11.5 mo Tg MSA mice. FTY720-Mitoxy also increased levels of brain GDNF and reduced brain miR-96-5p, a miRNA that acts to decrease GDNF expression. Moreover, FTY720-Mitoxy blocked aSyn pathology measured by sequential protein extraction and immunoblot, and microglial activation assessed by immunohistochemistry and immunoblot. In the 3-nitropropionic acid (3NP) toxin model of MSA, FTY720-Mitoxy protected movement and mitochondria in WT and CNP-aSyn Tg littermates. Our data confirm potent in vivo protection by FTY720-Mitoxy, supporting its further evaluation as a potential therapy for MSA and related synucleinopathies.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martinez
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Ismael Segura-Ulate
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Barbara Yang
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Valeria Diaz-Pacheco
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Jose A Barragan
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Jocelyn De-Leon Esquivel
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Stephanie A Chaparro
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Javier Vargas-Medrano
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Ruth G Perez
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America.
| |
Collapse
|
15
|
Valek L, Auburger G, Tegeder I. Sensory neuropathy and nociception in rodent models of Parkinson's disease. Dis Model Mech 2019; 12:12/6/dmm039396. [PMID: 31248900 PMCID: PMC6602317 DOI: 10.1242/dmm.039396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) often manifests with prodromal pain and sensory losses whose etiologies are not well understood. Multiple genetic and toxicity-based rodent models of PD partly recapitulate the histopathology and motor function deficits. Although far less studied, there is some evidence that rodents, similar to humans, develop sensory manifestations of the disease, which may precede motor disturbances and help to elucidate the underlying mechanisms of PD-associated pain at the molecular and neuron circuit levels. The present Review summarizes nociception and other sensory functions in frequently used rodent PD models within the context of the complex phenotypes. In terms of mechanisms, it appears that the acute loss of dopaminergic neurons in systemic toxicity models (MPTP, rotenone) primarily causes nociceptive hyperexcitability, presumably owing to a loss of inhibitory control, whereas genetic models primarily result in a progressive loss of heat perception, reflecting sensory fiber neuropathies. At the molecular level, neither α-synuclein deposits alone nor failure of mitophagy alone appear to be strong enough to result in axonal or synaptic pathology of nociceptive neurons that manifest at the behavioral level, and peripheral sensory loss may mask central ‘pain’ in behavioral tests. Hence, allostatic combinations or additional challenges and novel behavioral assessments are needed to better evaluate PD-associated sensory neuropathies and pain in rodents. Summary: Rodent models of Parkinson's disease partially develop prodromal somatosensory and olfactory dysfunctions reminiscent of sensory neuropathies in patients and reveal mechanistic insight, but data are incomplete and fragmented.
Collapse
Affiliation(s)
- Lucie Valek
- Institute of Clinical Pharmacology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital, 60590 Frankfurt, Germany
| |
Collapse
|
16
|
A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nat Commun 2018; 9:4403. [PMID: 30353009 PMCID: PMC6199302 DOI: 10.1038/s41467-018-06895-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerves are anisotropic and heterogeneous neural tissues. Their complex physiology restricts realistic in vitro models, and high resolution and selective probing of axonal activity. Here, we present a nerve-on-a-chip platform that enables rapid extracellular recording and axonal tracking of action potentials collected from tens of myelinated fibers. The platform consists of microfabricated stimulation and recording microchannel electrode arrays. First, we identify conduction velocities of action potentials traveling through the microchannel and propose a robust data-sorting algorithm using velocity selective recording. We optimize channel geometry and electrode spacing to enhance the algorithm reliability. Second, we demonstrate selective heat-induced neuro-inhibition of peripheral nerve activity upon local illumination of a conjugated polymer (P3HT) blended with a fullerene derivative (PCBM) coated on the floor of the microchannel. We demonstrate the nerve-on-a-chip platform is a versatile tool to optimize the design of implantable peripheral nerve interfaces and test selective neuromodulation techniques ex vivo. Peripheral nerves have a complex physiology and it is therefore difficult to measure axonal activity in vitro. Here the authors make a nerve-on-a-chip platform to align peripheral nerves and permit measurement of conduction amplitude and velocity along several axons in a single experiment.
Collapse
|
17
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
18
|
Jellinger KA. Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 2017; 17:1189-1208. [DOI: 10.1080/14737175.2017.1392239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|