1
|
Yang R, Lu Y, Yin N, Faiola F. Transcriptomic Integration Analyses Uncover Common Bisphenol A Effects Across Species and Tissues Primarily Mediated by Disruption of JUN/FOS, EGFR, ER, PPARG, and P53 Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19156-19168. [PMID: 37978927 DOI: 10.1021/acs.est.3c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bisphenol A (BPA) is a common endocrine disruptor widely used in the production of electronic, sports, and medical equipment, as well as consumer products like milk bottles, dental sealants, and thermal paper. Despite its widespread use, current assessments of BPA exposure risks remain limited due to the lack of comprehensive cross-species comparative analyses. To address this gap, we conducted a study aimed at identifying genes and fundamental molecular processes consistently affected by BPA in various species and tissues, employing an effective data integration method and bioinformatic analyses. Our findings revealed that exposure to BPA led to significant changes in processes like lipid metabolism, proliferation, and apoptosis in the tissues/cells of mammals, fish, and nematodes. These processes were found to be commonly affected in adipose, liver, mammary, uterus, testes, and ovary tissues. Additionally, through an in-depth analysis of signaling pathways influenced by BPA in different species and tissues, we observed that the JUN/FOS, EGFR, ER, PPARG, and P53 pathways, along with their downstream key transcription factors and kinases, were all impacted by BPA. Our study provides compelling evidence that BPA indeed induces similar toxic effects across different species and tissues. Furthermore, our investigation sheds light on the underlying molecular mechanisms responsible for these toxic effects. By uncovering these mechanisms, we gain valuable insights into the potential health implications associated with BPA exposure, highlighting the importance of comprehensive assessments and awareness of this widespread endocrine disruptor.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanping Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Meta-Analysis of RNA-Seq Datasets Identifies Novel Players in Glioblastoma. Cancers (Basel) 2022; 14:cancers14235788. [PMID: 36497269 PMCID: PMC9737249 DOI: 10.3390/cancers14235788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs). This meta-analysis aimed to improve power and reproducibility of the individual studies while identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma. Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a functionally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster identified several glioblastoma-linked pathways, which were also previously associated with the novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some candidates for further analyses.
Collapse
|
3
|
Han Z, Hua J, Xue W, Zhu F. Integrating the Ribonucleic Acid Sequencing Data From Various Studies for Exploring the Multiple Sclerosis-Related Long Noncoding Ribonucleic Acids and Their Functions. Front Genet 2019; 10:1136. [PMID: 31781177 PMCID: PMC6861379 DOI: 10.3389/fgene.2019.01136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic fatal central nervous system (CNS) disease involving in complex immunity dysfunction. Recently, long noncoding RNAs (lncRNAs) were discovered as the important regulatory factors for the pathogenesis of MS. However, these findings often cannot be repeated and confirmed by the subsequent studies. We considered that the small-scale samples or the heterogeneity among various tissues may result in the divergence of the results. Currently, RNA-seq has become a powerful approach to quantify the abundances of lncRNA transcripts. Therefore, we comprehensively collected the MS-related RNA-seq data from a variety of previous studies, and integrated these data using an expression-based meta-analysis to identify the differentially expressed lncRNA between MS patients and controls in whole samples and subgroups. Then, we performed the Jensen-Shannon (JS) divergence and cluster analysis to explore the heterogeneity and expression specificity among various tissues. Finally, we investigated the potential function of identified lncRNAs for MS using weighted gene co-expression network analysis (WGCNA) and gene set enrichment analysis (GSEA), and 5,420 MS-related lncRNAs specifically expressed in the brain tissue were identified. The subgroup analysis found a small heterogeneity of the lncRNA expression profiles between brain and blood tissues. The results of WGCNA and GSEA showed that a potential important function of lncRNAs in MS may be involved in the regulation of ribonucleoproteins and tumor necrosis factor cytokines receptors. In summary, this study provided a strategy to explore disease-related lncRNAs on genome-wide scale, and our findings will be benefit to improve the understanding of MS pathogenesis.
Collapse
Affiliation(s)
- Zhijie Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Jiao Hua
- School of Mathematics, Harbin Institute of Technology, Harbin, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Taškova K, Fontaine JF, Mrowka R, Andrade-Navarro MA. Literature optimized integration of gene expression for organ-specific evaluation of toxicogenomics datasets. PLoS One 2019; 14:e0210467. [PMID: 30640953 PMCID: PMC6331104 DOI: 10.1371/journal.pone.0210467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/24/2018] [Indexed: 11/30/2022] Open
Abstract
The study of drug toxicity in human organs is complicated by their complex inter-relations and by the obvious difficulty to testing drug effects on biologically relevant material. Animal models and human cell cultures offer alternatives for systematic and large-scale profiling of drug effects on gene expression level, as typically found in the so-called toxicogenomics datasets. However, the complexity of these data, which includes variable drug doses, time points, and experimental setups, makes it difficult to choose and integrate the data, and to evaluate the appropriateness of one or another model system to study drug toxicity (of particular drugs) of particular human organs. Here, we define a protocol to integrate drug-wise rankings of gene expression changes in toxicogenomics data, which we apply to the TG-GATEs dataset, to prioritize genes for association to drug toxicity in liver or kidney. Contrast of the results with sets of known human genes associated to drug toxicity in the literature allows to compare different rank aggregation approaches for the task at hand. Collectively, ranks from multiple models point to genes not previously associated to toxicity, notably, the PCNA clamp associated factor (PCLAF), and genes regulated by the master regulator of the antioxidant response NFE2L2, such as NQO1 and SRXN1. In addition, comparing gene ranks from different models allowed us to evaluate striking differences in terms of toxicity-associated genes between human and rat hepatocytes or between rat liver and rat hepatocytes. We interpret these results to point to the different molecular functions associated to organ toxicity that are best described by each model. We conclude that the expected production of toxicogenomics panels with larger numbers of drugs and models, in combination with the ongoing increase of the experimental literature in organ toxicity, will lead to increasingly better associations of genes for organism toxicity.
Collapse
Affiliation(s)
| | | | - Ralf Mrowka
- Experimentelle Nephrologie, Universitätsklinikum Jena, KIM III, Jena, Germany
| | | |
Collapse
|
5
|
Van Vleet TR, Liguori MJ, Lynch JJ, Rao M, Warder S. Screening Strategies and Methods for Better Off-Target Liability Prediction and Identification of Small-Molecule Pharmaceuticals. SLAS DISCOVERY 2018; 24:1-24. [PMID: 30196745 DOI: 10.1177/2472555218799713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmaceutical discovery and development is a long and expensive process that, unfortunately, still results in a low success rate, with drug safety continuing to be a major impedance. Improved safety screening strategies and methods are needed to more effectively fill this critical gap. Recent advances in informatics are now making it possible to manage bigger data sets and integrate multiple sources of screening data in a manner that can potentially improve the selection of higher-quality drug candidates. Integrated screening paradigms have become the norm in Pharma, both in discovery screening and in the identification of off-target toxicity mechanisms during later-stage development. Furthermore, advances in computational methods are making in silico screens more relevant and suggest that they may represent a feasible option for augmenting the current screening paradigm. This paper outlines several fundamental methods of the current drug screening processes across Pharma and emerging techniques/technologies that promise to improve molecule selection. In addition, the authors discuss integrated screening strategies and provide examples of advanced screening paradigms.
Collapse
Affiliation(s)
- Terry R Van Vleet
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Michael J Liguori
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - James J Lynch
- 2 Department of Integrated Science and Technology, AbbVie, N Chicago, IL, USA
| | - Mohan Rao
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Scott Warder
- 3 Department of Target Enabling Science and Technology, AbbVie, N Chicago, IL, USA
| |
Collapse
|
6
|
Khosravi A, Sharifi I, Tavakkoli H, Derakhshanfar A, Keyhani AR, Salari Z, Mosallanejad SS, Bamorovat M. Embryonic toxico-pathological effects of meglumine antimoniate using a chick embryo model. PLoS One 2018; 13:e0196424. [PMID: 29799841 PMCID: PMC5969735 DOI: 10.1371/journal.pone.0196424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is one of the diverse and neglected tropical diseases. Embryo-toxicity of drugs has always been a major concern. Chick embryo is a preclinical model relevant in the assessment of adverse effects of drugs. The current study aimed to assess embryonic histopathological disorders and amniotic fluid biochemical changes following meglumine antimoniate treatment. The alteration of vascular branching pattern in the chick’s extra-embryonic membrane and exploration of molecular cues to early embryonic vasculogenesis and angiogenesis were also quantified. Embryonated chicken eggs were treated with 75 or 150 mg/kg of meglumine antimoniate. Embryo malformations, growth retardation and haemorrhages on the external body surfaces were accompanied by histopathological lesions in the brain, kidney, liver and heart in a dose-dependent manner. Significant rise occurred in the biochemical indices of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase and amylase in the amniotic fluid. Quantification of the extra-embryonic membrane vasculature showed that the anti-angiogenic and anti-vasculogenic effects of the drug were revealed by a significant decrease in fractal dimension value and mean capillary area. The relative expression levels of vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 mRNA also significantly reduced. Concerns of a probable teratogenicity of meglumine antimoniate were established by data presented in this study. It is concluded that tissue lesions, amniotic fluid disturbance, altered early extra-embryonic vascular development and gene expression as well as the consecutive cascade of events, might eventually lead to developmental defects in embryo following meglumine antimoniate treatment. Therefore, the use of meglumine antimoniate during pregnancy should be considered as potentially embryo-toxic. Hence, physicians should be aware of such teratogenic effects and limit the use of this drug during the growing period of the fetus, particularly in rural communities. Further pharmaceutical investigations are crucial for planning future strategies.
Collapse
Affiliation(s)
- Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- * E-mail: (IS); (HT)
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
- * E-mail: (IS); (HT)
| | - Amin Derakhshanfar
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Correction: Meta-Analysis of Large-Scale Toxicogenomic Data Finds Neuronal Regeneration Related Protein and Cathepsin D to Be Novel Biomarkers of Drug-Induced Toxicity. PLoS One 2016; 11:e0163403. [PMID: 27632408 PMCID: PMC5025120 DOI: 10.1371/journal.pone.0163403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Nagashima T, Shirakawa H, Nakagawa T, Kaneko S. Prevention of antipsychotic-induced hyperglycaemia by vitamin D: a data mining prediction followed by experimental exploration of the molecular mechanism. Sci Rep 2016; 6:26375. [PMID: 27199286 PMCID: PMC4873813 DOI: 10.1038/srep26375] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Atypical antipsychotics are associated with an increased risk of hyperglycaemia, thus limiting their clinical use. This study focused on finding the molecular mechanism underlying antipsychotic-induced hyperglycaemia. First, we searched for drug combinations in the FDA Adverse Event Reporting System (FAERS) database wherein a coexisting drug reduced the hyperglycaemia risk of atypical antipsychotics, and found that a combination with vitamin D analogues significantly decreased the occurrence of quetiapine-induced adverse events relating diabetes mellitus in FAERS. Experimental validation using mice revealed that quetiapine acutely caused insulin resistance, which was mitigated by dietary supplementation with cholecalciferol. Further database analysis of the relevant signalling pathway and gene expression predicted quetiapine-induced downregulation of Pik3r1, a critical gene acting downstream of insulin receptor. Focusing on the phosphatidylinositol 3-kinase (PI3K) signalling pathway, we found that the reduced expression of Pik3r1 mRNA was reversed by cholecalciferol supplementation in skeletal muscle, and that insulin-stimulated glucose uptake into C2C12 myotube was inhibited in the presence of quetiapine, which was reversed by concomitant calcitriol in a PI3K-dependent manner. Taken together, these results suggest that vitamin D coadministration prevents antipsychotic-induced hyperglycaemia and insulin resistance by upregulation of PI3K function.
Collapse
Affiliation(s)
- Takuya Nagashima
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|