1
|
Dong WK. Modulation of multisensory nociceptive neurons in monkey cortical area 7b and behavioral correlates. J Neurophysiol 2024; 132:544-569. [PMID: 38985936 PMCID: PMC11427044 DOI: 10.1152/jn.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.
Collapse
Affiliation(s)
- Willie K Dong
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, Washington, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
2
|
Legrain V, Filbrich L, Vanderclausen C. Letter on the pain of blind people for the use of those who can see their pain. Pain 2023; 164:1451-1456. [PMID: 36728808 DOI: 10.1097/j.pain.0000000000002862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Camille Vanderclausen
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Neuropsychological Rehabilitation Unit, Saint-Luc University Hospital, Brussels, Belgium
| |
Collapse
|
3
|
Manfron L, Filbrich L, Molitor V, Farnè A, Mouraux A, Legrain V. Perceptual simultaneity between nociceptive and visual stimuli depends on their spatial congruence. Exp Brain Res 2023:10.1007/s00221-023-06637-2. [PMID: 37222776 DOI: 10.1007/s00221-023-06637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
To protect our body against physical threats, it is important to integrate the somatic and extra-somatic inputs generated by these stimuli. Temporal synchrony is an important parameter determining multisensory interaction, and the time taken by a given sensory input to reach the brain depends on the length and conduction velocity of the specific pathways through which it is transmitted. Nociceptive inputs are transmitted through very slow conducting unmyelinated C and thinly myelinated Aδ nociceptive fibers. It was previously shown that to perceive a visual stimulus and a thermo-nociceptive stimulus applied on the hand as coinciding in time, the nociceptive stimulus must precede the visual one by 76 ms for nociceptive inputs conveyed by Aδ fibers and 577 ms for inputs conveyed by C fibers. Since spatial proximity is also hypothesized to contribute to multisensory interaction, the present study investigated the effect of spatial congruence between visual and nociceptive stimuli. Participants judged the temporal order of visual and nociceptive stimuli, with the visual stimuli flashed either next to the stimulated hand or next to the opposite unstimulated hand, and with nociceptive stimuli evoking responses mediated by either Aδ or C fibers. The amount of time by which the nociceptive stimulus had to precede the visual stimulus for them to be perceived as appearing concomitantly was smaller when the visual stimulus occurred near the hand receiving the nociceptive stimulus as compared to when it occurred near the contralateral hand. This illustrates the challenge for the brain to process the synchrony between nociceptive and non-nociceptive stimuli to enable their efficient interaction to optimize defensive reaction against physical dangers.
Collapse
Affiliation(s)
- Louise Manfron
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Victoria Molitor
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium
| | - Alessandro Farnè
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, France
| | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium.
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Northon S, Deldar Z, Piché M. Effects of spatial attention and limb position on the cortical interaction of bilateral noxious inputs. Psychophysiology 2021; 59:e13966. [PMID: 34783035 DOI: 10.1111/psyp.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/20/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Bilateral noxious inputs interact in the brain to provide a better representation of physical threat. In the present study, we investigated the effects of spatial attention and limb position on this interaction. Painful laser stimuli were applied randomly on the right hand or on both hands, while varying spatial attention (focal or overall) and limb position (hands near or far from each other). Pain perception and laser-evoked potentials (N1, N2, P2) were compared between conditions in 27 healthy volunteers. Compared with unilateral stimulation, bilateral stimulation increased pain (p = .004), the N2 (p = .0015) and P2 (p < .001) amplitude. The effects on pain and the P2 were greater when hands were in the near compared with the far position (p < .05). The effect on pain was also greater for overall compared with focal pain rating (p = .003). In addition, the N1 amplitude was greater for bilateral stimulation when hands were in the far compared with the near position (p = .01). These results show that increased brain responses and pain for bilateral compared with unilateral noxious stimulation are modulated differentially by spatial attention and limb position. This suggests that the integration of noxious inputs occurs through partially independent pain-related processes, that it is modulated by limb position, and that it is partially independent of pain perception. We propose that this is necessary to produce coordinated, flexible and adapted defensive responses.
Collapse
Affiliation(s)
- Stéphane Northon
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Zoha Deldar
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| |
Collapse
|
5
|
Measuring the sensitivity of tactile temporal order judgments in sighted and blind participants using the adaptive psi method. Atten Percept Psychophys 2021; 83:2995-3007. [PMID: 34036536 DOI: 10.3758/s13414-021-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 11/08/2022]
Abstract
Spatial locations of somatosensory stimuli are coded according to somatotopic (anatomical distribution of the sensory receptors on the skin surface) and spatiotopic (position of the body parts in external space) reference frames. This was mostly evidenced by means of temporal order judgment (TOJ) tasks in which participants discriminate the temporal order of two tactile stimuli, one applied on each hand. Because crossing the hands generates a conflict between anatomical and spatial responses, TOJ performance is decreased in such posture, except for congenitally blind people, suggesting a role of visual experience in somatosensory perception. In previous TOJ studies, stimuli were generally presented using the method of constant stimuli-that is, the repetition of a predefined sample of stimulus-onset asynchronies (SOA) separating the two stimuli. This method has the disadvantage that a large number of trials is needed to obtain reliable data when aiming at dissociating performances of groups characterized by different cognitive abilities. Indeed, each SOA among a large variety of different SOAs should be presented the same number of times irrespective of the participant's performance. This study aimed to replicate previous tactile TOJ data in sighted and blind participants with the adaptive psi method in order to validate a novel method that adapts the presented SOA according to the participant's performance. This allows to precisely estimate the temporal sensitivity of each participant while the presented stimuli are adapted to the participant's individual discrimination threshold. We successfully replicated previous findings in both sighted and blind participants, corroborating previous data using a more suitable psychophysical tool.
Collapse
|
6
|
Manfron L, Vanderclausen C, Legrain V. No Evidence for an Effect of the Distance Between the Hands on Tactile Temporal Order Judgments. Perception 2021; 50:294-307. [PMID: 33653176 DOI: 10.1177/0301006621998877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Localizing somatosensory stimuli is an important process, as it allows us to spatially guide our actions toward the object entering in contact with the body. Accordingly, the positions of tactile inputs are coded according to both somatotopic and spatiotopic representations, the latter one considering the position of the stimulated limbs in external space. The spatiotopic representation has often been evidenced by means of temporal order judgment (TOJ) tasks. Participants' judgments about the order of appearance of two successive somatosensory stimuli are less accurate when the hands are crossed over the body midline than uncrossed but also when participants' hands are placed close together when compared with farther away. Moreover, these postural effects might depend on the vision of the stimulated limbs. The aim of this study was to test the influence of seeing the hands, on the modulation of tactile TOJ by the spatial distance between the stimulated limbs. The results showed no influence of the distance between the stimulated hands on TOJ performance and prevent us from concluding whether vision of the hands affects TOJ performance, or whether these variables interact. The reliability of such distance effect to investigate the spatial representations of tactile inputs is questioned.
Collapse
|
7
|
De Paepe AL, Legrain V, Van der Biest L, Hollevoet N, Van Tongel A, De Wilde L, Jacobs H, Crombez G. An investigation of perceptual biases in complex regional pain syndrome. PeerJ 2020; 8:e8819. [PMID: 32274265 PMCID: PMC7130113 DOI: 10.7717/peerj.8819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/28/2020] [Indexed: 01/31/2023] Open
Abstract
Patients with complex regional pain syndrome (CRPS) report cognitive difficulties, affecting the ability to represent, perceive and use their affected limb. Moseley, Gallace & Spence (2009) observed that CRPS patients tend to bias the perception of tactile stimulation away from the pathological limb. Interestingly, this bias was reversed when CRPS patients were asked to cross their arms, implying that this bias is embedded in a complex representation of the body that takes into account the position of body-parts. Other studies have failed to replicate this finding (Filbrich et al., 2017) or have even found a bias in the opposite direction (Sumitani et al., 2007). Moreover, perceptual biases in CRPS patients have not often been compared to these of other chronic pain patients. Chronic pain patients are often characterized by an excessive focus of attention for bodily sensations. We might therefore expect that non-CRPS pain patients would show a bias towards instead of away from their affected limb. The aim of this study was to replicate the study of Moseley, Gallace & Spence (2009) and to extend it by comparing perceptual biases in a CRPS group with two non-CRPS pain control groups (i.e., chronic unilateral wrist and shoulder pain patients). In a temporal order judgment (TOJ) task, participants reported which of two tactile stimuli, one applied to either hand at various intervals, was perceived as occurring first. TOJs were made, either with the arms in a normal (uncrossed) position, or with the arms crossed over the body midline. We found no consistent perceptual biases in either of the patient groups and in either of the conditions (crossed/uncrossed). Individual differences were large and might, at least partly, be explained by other variables, such as pain duration and temperature differences between the pathological and non-pathological hand. Additional studies need to take these variables into account by, for example, comparing biases in CRPS (and non-CRPS) patients in an acute versus a chronic pain state.
Collapse
Affiliation(s)
- Annick L. De Paepe
- Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Lien Van der Biest
- Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Nadine Hollevoet
- Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium
| | - Alexander Van Tongel
- Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium
| | - Lieven De Wilde
- Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium
| | - Herlinde Jacobs
- Unit of Physical Medicine, AZ Maria Middelares Hospital, Ghent, Belgium
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Testing the exteroceptive function of nociception: The role of visual experience in shaping the spatial representations of nociceptive inputs. Cortex 2020; 126:26-38. [PMID: 32062141 DOI: 10.1016/j.cortex.2019.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 12/14/2019] [Indexed: 01/30/2023]
Abstract
Adequately localizing pain is crucial to protect the body against physical damage and react to the stimulus in external space having caused such damage. Accordingly, it is hypothesized that nociceptive inputs are remapped from a somatotopic reference frame, representing the skin surface, towards a spatiotopic frame, representing the body parts in external space. This ability is thought to be developed and shaped by early visual experience. To test this hypothesis, normally sighted and early blind participants performed temporal order judgment tasks during which they judged which of two nociceptive stimuli applied on each hand's dorsum was perceived as first delivered. Crucially, tasks were performed with the hands either in an uncrossed posture or crossed over body midline. While early blinds were not affected by the posture, performances of the normally sighted participants decreased in the crossed condition relative to the uncrossed condition. This indicates that nociceptive stimuli were automatically remapped into a spatiotopic representation that interfered with somatotopy in normally sighted individuals, whereas early blinds seemed to mostly rely on a somatotopic representation to localize nociceptive inputs. Accordingly, the plasticity of the nociceptive system would not purely depend on bodily experiences but also on crossmodal interactions between nociception and vision during early sensory experience.
Collapse
|
9
|
The influence of visual experience and cognitive goals on the spatial representations of nociceptive stimuli. Pain 2019; 161:328-337. [DOI: 10.1097/j.pain.0000000000001721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Meulders A, Vlaeyen JW. The effect of differential spatiotopic information on the acquisition and generalization of fear of movement-related pain. PeerJ 2019; 7:e6913. [PMID: 31143542 PMCID: PMC6525585 DOI: 10.7717/peerj.6913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/03/2019] [Indexed: 01/16/2023] Open
Abstract
Fear of movement-related pain significantly contributes to musculoskeletal chronic pain disability. Previous research has shown that fear of movement-related pain can be classically conditioned. That is, in a differential fear conditioning paradigm, after (repeatedly) pairing a neutral joystick movement (conditioned stimulus; CS+) with a painful stimulus (unconditioned stimulus; pain-US), that movement in itself starts to elicit self-reported fear and elevated psychophysiological arousal compared to a control joystick movement (CS−) that was never paired with pain. Further, it has been demonstrated that novel movements that are more similar to the original CS+ elicit more fear than novel movements that are more similar to the CS−, an adaptive process referred to as stimulus generalization. By default, movement/action takes place in reference to the three-dimensional space: a movement thus not only involves proprioceptive information, but it also contains spatiotopic information. Therefore, the aim of this study was to investigate to what extent spatiotopic information (i.e., endpoint location of movement) contributes to the acquisition and generalization of such fear of movement-related pain besides proprioception (i.e., movement direction). In a between-subjects design, the location group performed joystick movements from the middle position to left and right; the movement group moved the joystick from left and right to the middle. One movement (CS+) was paired with pain, another not (CS−). Feature overlap between CSs typically reduces differential learning. The endpoint of both CSs in the movement group is an overlapping feature whereas in the location group the endpoint of both CSs is distinct; therefore we hypothesized that there would be less differential fear learning in the movement group compared to the location group. We also tested generalization to movements with similar proprioceptive features but different endpoint location. Following the principle of stimulus generalization, we expected that novel movements in the same direction as the CS+ but with a different endpoint would elicit more fear than novel movement in the same direction of the CS− but with a different endpoint. Main outcome variables were self-reported fear and pain-US expectancy and eyeblink startle responses (electromyographic). Corroborating the feature overlap hypothesis, the location group showed greater differential fear acquisition. Fear generalization emerged for both groups in the verbal ratings, suggesting that fear indeed accrued to proprioceptive CS features; these effects, however, were not replicated in the startle measures.
Collapse
Affiliation(s)
- Ann Meulders
- Experimental Health Psychology, Maastricht University, Maastricht, Netherlands.,Research Group Health Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johan W Vlaeyen
- Experimental Health Psychology, Maastricht University, Maastricht, Netherlands.,Research Group Health Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Filbrich L, Blandiaux S, Manfron L, Farnè A, De Keyser R, Legrain V. Unimodal and crossmodal extinction of nociceptive stimuli in healthy volunteers. Behav Brain Res 2019; 362:114-121. [PMID: 30630019 DOI: 10.1016/j.bbr.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 12/28/2018] [Accepted: 01/06/2019] [Indexed: 11/25/2022]
Abstract
Nociception, the physiological mechanisms specifically processing information about noxious and potentially painful stimuli, has the double function to warn about potential body damages (interoception) and about the cause of such potential damages (exteroception). The exteroceptive function is thought to rely on multisensory integration between somatic and extra-somatic stimuli, provided that extra-somatic stimuli occur near the stimulated body area. To corroborate this hypothesis, we succeeded to show in healthy volunteers that the perception of nociceptive stimuli applied on one hand can be extinguished, as compared to single presentation, by the simultaneous application of nociceptive stimuli on the opposite hand, as well as by the presentation of visual stimuli near the opposite hand. On the contrary, visual stimuli presented near the same stimulated hand facilitated the perception of nociceptive stimuli. This nociceptive extinction phenomenon indicates that the perception of noxious events does not merely rely on the specific activation of the nociceptive system, but also depends on other sensory experiences about the body and the space around it.
Collapse
Affiliation(s)
- Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Séverine Blandiaux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Louise Manfron
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Alessandro Farnè
- ImpAct team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Roxane De Keyser
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
12
|
Versace V, Campostrini S, Sebastianelli L, Saltuari L, Kofler M. Modulation of exteroceptive electromyographic responses in defensive peripersonal space. J Neurophysiol 2019; 121:1111-1124. [PMID: 30811266 DOI: 10.1152/jn.00554.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cutaneous silent period (CSP) to noxious finger stimulation constitutes a robust spinal inhibitory reflex that protects the hand from injury. In certain conditions, spinal inhibition is interrupted by a brief burst-like electromyographic activity, dividing the CSP into two inhibitory phases (I1 and I2). This excitatory component is termed long-loop reflex (LLR) and is presumed to be transcortical in origin. Efficient defense from environmental threats requires sensorimotor integration between multimodal sensory afferents and planning of defensive movements. In the defensive peripersonal space (DPPS) immediately surrounding the body, we interact with objects and persons with increased alertness. We investigated whether CSP differs when the stimulated hand is in the DPPS of the face compared with a distant position. Furthermore, we investigated the possible role of vision in CSP modulation. Fifteen healthy volunteers underwent CSP testing with the handheld either within 5 cm from the nose (near) or away from the body (far). Recordings were obtained from first dorsal interosseous muscle following index (D2) or little finger (D5) stimulation with varying intensities. A subgroup of subjects underwent CSP recordings in near and far conditions, both with eyes open and with eyes closed. No inhibitory CSP parameter differed between stimulation in near and far conditions. LLRs occurring following D2 stimulation were significantly larger in near than far conditions at all stimulus intensities, irrespective of subjects seeing their hand. Similar to the hand-blink reflex, spinally organized protective reflexes may be modulated by corticospinal facilitatory input when the hand enters the DPPS of the face. NEW & NOTEWORTHY The present findings demonstrate for the first time that a spinally organized protective reflex, the cutaneous silent period (CSP), may be modulated by top-down corticospinal facilitatory input when the stimulated hand enters the defensive peripersonal space (DPPS) of the face. In particular, the cortically mediated excitatory long-loop reflex, which may interrupt the CSP, is facilitated when the stimulated hand is in the DPPS, irrespective of visual control over the hand. No spinal inhibitory CSP parameter differs significantly in or outside the DPPS.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing and Research Unit for Neurorehabilitation of South Tyrol, Sterzing, Italy
| | - Stefania Campostrini
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing and Research Unit for Neurorehabilitation of South Tyrol, Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing and Research Unit for Neurorehabilitation of South Tyrol, Sterzing, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing and Research Unit for Neurorehabilitation of South Tyrol, Sterzing, Italy.,Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| |
Collapse
|
13
|
Abstract
The construction of a coherent representation of our body and the mapping of the space immediately surrounding it are of the highest ecological importance. This space has at least three specificities: it is a space where actions are planned in order to interact with our environment; it is a space that contributes to the experience of self and self-boundaries, through tactile processing and multisensory interactions; last, it is a space that contributes to the experience of body integrity against external events. In the last decades, numerous studies have been interested in peripersonal space (PPS), defined as the space directly surrounding us and which we can interact with (for reviews, see Cléry et al., 2015b; de Vignemont and Iannetti, 2015; di Pellegrino and Làdavas, 2015). These studies have contributed to the understanding of how this space is constructed, encoded and modulated. The majority of these studies focused on subparts of PPS (the hand, the face or the trunk) and very few of them investigated the interaction between PPS subparts. In the present review, we summarize the latest advances in this research and we discuss the new perspectives that are set forth for futures investigations on this topic. We describe the most recent methods used to estimate PPS boundaries by the means of dynamic stimuli. We then highlight how impact prediction and approaching stimuli modulate this space by social, emotional and action-related components involving principally a parieto-frontal network. In a next step, we review evidence that there is not a unique representation of PPS but at least three sub-sections (hand, face and trunk PPS). Last, we discuss how these subspaces interact, and we question whether and how bodily self-consciousness (BSC) is functionally and behaviorally linked to PPS.
Collapse
Affiliation(s)
- Justine Cléry
- UMR5229, Institut des Sciences Cognitives Marc Jeannerod, CNRS-Université Claude Bernard Lyon I, Bron, France
| | - Suliann Ben Hamed
- UMR5229, Institut des Sciences Cognitives Marc Jeannerod, CNRS-Université Claude Bernard Lyon I, Bron, France
| |
Collapse
|
14
|
No perceptual prioritization of non-nociceptive vibrotactile and visual stimuli presented on a sensitized body part. Sci Rep 2018; 8:5359. [PMID: 29599492 PMCID: PMC5876401 DOI: 10.1038/s41598-018-23135-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
High frequency electrical conditioning stimulation (HFS) is an experimental method to induce increased mechanical pinprick sensitivity in the unconditioned surrounding skin (secondary hyperalgesia). Secondary hyperalgesia is thought to be the result of central sensitization, i.e. increased responsiveness of nociceptive neurons in the central nervous system. Vibrotactile and visual stimuli presented in the area of secondary hyperalgesia also elicit enhanced brain responses, a finding that cannot be explained by central sensitization as it is currently defined. HFS may recruit attentional processes, which in turn affect the processing of all stimuli. In this study we have investigated whether HFS induces perceptual biases towards stimuli presented onto the sensitized arm by using Temporal Order Judgment (TOJ) tasks. In TOJ tasks, stimuli are presented in rapid succession on either arm, and participants have to indicate their perceived order. In case of a perceptual bias, the stimuli presented on the attended side are systematically reported as occurring first. Participants performed a tactile and a visual TOJ task before and after HFS. Analyses of participants' performance did not reveal any prioritization of the visual and tactile stimuli presented onto the sensitized arm. Our results provide therefore no evidence for a perceptual bias towards tactile and visual stimuli presented onto the sensitized arm.
Collapse
|
15
|
Legrain V, Manfron L, Garcia M, Filbrich L. Does Body Perception Shape Visuospatial Perception? Perception 2018; 47:507-520. [DOI: 10.1177/0301006618763269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How we perceive our body is shaped by sensory experiences with our surrounding environment, as witnessed by poor performance in tasks during which participants judge with their hands crossed the temporal order between two somatosensory stimuli, one applied on each hand. This suggests that somatosensory stimuli are not only processed according to a somatotopic representation but also a spatiotopic representation of the body. We investigated whether the perception of stimuli occurring in external space, such as visual stimuli, can also be influenced by the body posture and somatosensory stimuli. Participants performed temporal order judgements on pairs of visual stimuli, one in each side of space, with their hands uncrossed or crossed. In Experiment 1, participants’ hands were placed either near or far from the visual stimuli. In Experiment 2, the visual stimuli were preceded, either by 60 ms or 360 ms, by tactile stimuli applied on the hands placed near the visual stimuli. Manipulating the time interval was intended to activate either a somatotopic or a spatiotopic representation of somatic inputs. We did not obtain any evidence for an influence of body posture on visual temporal order judgment, suggesting that body perception is less relevant for processing extrabody stimuli than the reverse.
Collapse
Affiliation(s)
- Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Louise Manfron
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Marynn Garcia
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
16
|
Schmidt K, Gamer M, Forkmann K, Bingel U. Pain Affects Visual Orientation: an Eye-Tracking Study. THE JOURNAL OF PAIN 2018; 19:135-145. [DOI: 10.1016/j.jpain.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/04/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
|
17
|
Investigating the spatial characteristics of the crossmodal interaction between nociception and vision using gaze direction. Conscious Cogn 2018; 57:106-115. [DOI: 10.1016/j.concog.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/02/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
|
18
|
Stancak A, Fallon N, Fenu A, Kokmotou K, Soto V, Cook S. Neural Mechanisms of Attentional Switching Between Pain and a Visual Illusion Task: A Laser Evoked Potential Study. Brain Topogr 2017; 31:430-446. [PMID: 29260349 PMCID: PMC5889779 DOI: 10.1007/s10548-017-0613-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
Abstract
Previous studies demonstrated that pain induced by a noxious stimulus during a distraction task is affected by both stimulus-driven and goal-directed processes which interact and change over time. The purpose of this exploratory study was to analyse associations of aspects of subjective pain experience and engagement with the distracting task with attention-sensitive components of noxious laser-evoked potentials (LEPs) on a single-trial basis. A laser heat stimulus was applied to the dorsum of the left hand while subjects either viewed the Rubin vase-face illusion (RVI), or focused on their pain and associated somatosensory sensations occurring on their stimulated hand. Pain-related sensations occurring with every laser stimulus were evaluated using a set of visual analogue scales. Factor analysis was used to identify the principal dimensions of pain experience. LEPs were correlated with subjective aspects of pain experience on a single-trial basis using a multiple linear regression model. A positive LEP component at the vertex electrodes in the interval 294–351 ms (P2) was smaller during focusing on RVI than during focusing on the stimulated hand. Single-trial amplitude variations of the P2 component correlated with changes in Factor 1, representing essential aspects of pain, and inversely with both Factor 2, accounting for anticipated pain, and the number of RVI figure reversals. A source dipole located in the posterior region of the cingulate cortex was the strongest contributor to the attention-related single-trial variations of the P2 component. Instantaneous amplitude variations of the P2 LEP component during switching attention towards pain in the presence of a distracting task are related to the strength of pain experience, engagement with the task, and the level of anticipated pain. Results provide neurophysiological underpinning for the use of distraction analgesia acute pain relief.
Collapse
Affiliation(s)
- Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK. .,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK.
| | - Nicholas Fallon
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Alessandra Fenu
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Katerina Kokmotou
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK.,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - Vicente Soto
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Stephanie Cook
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| |
Collapse
|
19
|
Intense pain influences the cortical processing of visual stimuli projected onto the sensitized skin. Pain 2017; 158:691-697. [PMID: 28030473 DOI: 10.1097/j.pain.0000000000000816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sensitization is a form of implicit learning produced by the exposure to a harmful stimulus. In humans and other mammals, sensitization after skin injury increases the responsiveness of peripheral nociceptors and enhances the synaptic transmission of nociceptive input in the central nervous system. Here, we show that sensitization-related changes in the central nervous system are not restricted to nociceptive pathways and, instead, also affect other sensory modalities, especially if that modality conveys information relevant for the sensitized body part. Specifically, we show that after sensitizing the forearm using high-frequency electrical stimulation (HFS) of the skin, visual stimuli projected onto the sensitized forearm elicit significantly enhanced brain responses. Whereas mechanical hyperalgesia was present both 20 and 45 minutes after HFS, the enhanced responsiveness to visual stimuli was present only 20 minutes after HFS. Taken together, our results indicate that sensitization involves both nociceptive-specific and multimodal mechanisms, having distinct time courses.
Collapse
|
20
|
Filbrich L, Alamia A, Verfaille C, Berquin A, Barbier O, Libouton X, Fraselle V, Mouraux D, Legrain V. Biased visuospatial perception in complex regional pain syndrome. Sci Rep 2017; 7:9712. [PMID: 28852115 PMCID: PMC5574889 DOI: 10.1038/s41598-017-10077-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/04/2017] [Indexed: 01/19/2023] Open
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain condition associating sensory, motor, trophic and autonomic symptoms in one limb. Cognitive difficulties have also been reported, affecting the patients’ ability to mentally represent, perceive and use their affected limb. However, the nature of these deficits is still a matter of debate. Recent studies suggest that cognitive deficits are limited to body-related information and body perception, while not extending to external space. Here we challenge that statement, by using temporal order judgment (TOJ) tasks with tactile (i.e. body) or visual (i.e. extra-body) stimuli in patients with upper-limb CRPS. TOJ tasks allow characterizing cognitive biases to the advantage of one of the two sides of space. While the tactile TOJ tasks did not show any significant results, significant cognitive biases were observed in the visual TOJ tasks, affecting mostly the perception of visual stimuli occurring in the immediate vicinity of the affected limb. Our results clearly demonstrate the presence of visuospatial deficits in CRPS, corroborating the cortical contribution to the CRPS pathophysiology, and supporting the utility of developing rehabilitation techniques modifying visuospatial abilities to treat chronic pain.
Collapse
Affiliation(s)
- Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Andrea Alamia
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Charlotte Verfaille
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Anne Berquin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,University Hospital Saint-Luc, Brussels, Belgium
| | - Olivier Barbier
- University Hospital Saint-Luc, Brussels, Belgium.,Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Xavier Libouton
- University Hospital Saint-Luc, Brussels, Belgium.,Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Virginie Fraselle
- University Hospital Saint-Luc, Brussels, Belgium.,Faculty of Motor Sciences, Université catholique de Louvain, Brussels, Belgium
| | - Dominique Mouraux
- Faculty of Motor Sciences, Université libre de Bruxelles, Brussels, Belgium.,University Hospital Erasme, Brussels, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Filbrich L, Alamia A, Blandiaux S, Burns S, Legrain V. Shaping visual space perception through bodily sensations: Testing the impact of nociceptive stimuli on visual perception in peripersonal space with temporal order judgments. PLoS One 2017; 12:e0182634. [PMID: 28777824 PMCID: PMC5544212 DOI: 10.1371/journal.pone.0182634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/22/2017] [Indexed: 01/02/2023] Open
Abstract
Coordinating spatial perception between body space and its external surrounding space is essential to adapt behaviors to objects, especially when they are noxious. Such coherent multisensory representation of the body extended into external space is conceptualized by the notion of peripersonal reference frame, mapping the portion of space in which somatic and extra-somatic inputs interact closely. Studies on crossmodal interactions between nociception and vision have been scarce. Here we investigated how the perception of visual stimuli, especially those surrounding the body, can be impacted by a nociceptive and potentially harmful stimulus inflicted on a particular body part. In two temporal order judgment tasks, participants judged which of two lateralized visual stimuli, presented either near or far from the body, had been presented first. Visual stimuli were preceded by nociceptive stimuli, either applied unilaterally (on one single hand) or bilaterally (on both hands simultaneously). In Experiment 1 participants' hands were always placed next to the visual stimuli presented near the trunk, while in Experiment 2 they could also be placed next to the visual stimuli presented far from the trunk. In Experiment 1, the presence of unilateral nociceptive stimuli prioritized the perception of visual stimuli presented in the same side of space as the stimulated hand, with a significantly larger effect when visual stimuli were presented near the body than when presented farther away. Experiment 2 showed that these visuospatial biases were related to the spatial congruency between the hand on which nociceptive stimuli were applied and the visual stimuli, independently of the relative distance of both the stimulated hand and the visual stimuli from the trunk. Indeed, nociceptive stimuli mostly impacted the perception of the closest visual stimuli. It is hypothesized that these crossmodal interactions may rely on representations of the space directly surrounding specific body parts.
Collapse
Affiliation(s)
- Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Andrea Alamia
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Séverine Blandiaux
- Faculty of Psychology and Educational Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Soline Burns
- Faculty of Psychology and Educational Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
22
|
Remapping nociceptive stimuli into a peripersonal reference frame is spatially locked to the stimulated limb. Neuropsychologia 2017; 101:121-131. [DOI: 10.1016/j.neuropsychologia.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 11/23/2022]
|
23
|
Vanderclausen C, Filbrich L, Alamia A, Legrain V. Investigating peri-limb interaction between nociception and vision using spatial depth. Neurosci Lett 2017; 654:111-116. [DOI: 10.1016/j.neulet.2017.05.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/16/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
|
24
|
Filbrich L, Alamia A, Burns S, Legrain V. Orienting attention in visual space by nociceptive stimuli: investigation with a temporal order judgment task based on the adaptive PSI method. Exp Brain Res 2017; 235:2069-2079. [DOI: 10.1007/s00221-017-4951-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
25
|
Attentional bias to pain-relevant body locations: New methods, new challenges. Conscious Cogn 2016; 43:128-32. [PMID: 27286272 DOI: 10.1016/j.concog.2016.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 11/20/2022]
Abstract
In a recent issue of Consciousness and Cognition, Filbrich, Torta, Vanderclausen, Azanon, and Legrain (2016) commented on a paper in which we used a tactile Temporal Order Judgment (TOJ) task to show that expecting pain on a specific body location biased attention to that location (Vanden Bulcke, Crombez, Durnez, & Van Damme, 2015). Their main criticism is that the effects are likely to reflect response bias rather than genuine attentional bias. We agree that the TOJ task used may be susceptible to response bias, and welcome the authors' methodological suggestions to control for such bias. However, we feel that certain aspects of our work are misrepresented in their paper. Most importantly, we contest their argument that our instructions made the threat location task-relevant, thereby increasing risk of response bias. Further, we reply to other methodological and theoretical issues raised by these authors.
Collapse
|
26
|
De Paepe AL, Crombez G, Legrain V. What's Coming Near? The Influence of Dynamical Visual Stimuli on Nociceptive Processing. PLoS One 2016; 11:e0155864. [PMID: 27224421 PMCID: PMC4880339 DOI: 10.1371/journal.pone.0155864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/05/2016] [Indexed: 11/18/2022] Open
Abstract
Objects approaching us may pose a threat, and signal the need to initiate defensive behavior. Detecting these objects early is crucial to either avoid the object or prepare for contact most efficiently. This requires the construction of a coherent representation of our body, and the space closely surrounding our body, i.e. the peripersonal space. This study, with 27 healthy volunteers, investigated how the processing of nociceptive stimuli applied to the hand is influenced by dynamical visual stimuli either approaching or receding from the hand. On each trial a visual stimulus was either approaching or receding the participant's left or right hand. At different temporal delays from the onset of the visual stimulus, a nociceptive stimulus was applied either at the same or the opposite hand, so that it was presented when the visual stimulus was perceived at varying distances from the hand. Participants were asked to respond as fast as possible at which side they perceived a nociceptive stimulus. We found that reaction times were fastest when the visual stimulus appeared near the stimulated hand. Moreover, investigating the influence of the visual stimuli along the continuous spatial range (from near to far) showed that approaching lights had a stronger spatially dependent effect on nociceptive processing, compared to receding lights. These results suggest that the coding of nociceptive information in a peripersonal frame of reference may constitute a safety margin around the body that is designed to protect it from potential physical threat.
Collapse
Affiliation(s)
- Annick L. De Paepe
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- * E-mail:
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels Woluwe, Belgium
| |
Collapse
|
27
|
Filbrich L, Torta DM, Vanderclausen C, Azañón E, Legrain V. Using temporal order judgments to investigate attention bias toward pain and threat-related information. Methodological and theoretical issues. Conscious Cogn 2016; 41:135-8. [DOI: 10.1016/j.concog.2016.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|