1
|
Cheng B, Xing YM, Shih NC, Weng JP, Lin HC. The formulation and characterization of 3D printed grafts as vascular access for potential use in hemodialysis. RSC Adv 2018; 8:15471-15479. [PMID: 35539472 PMCID: PMC9080031 DOI: 10.1039/c8ra01583j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022] Open
Abstract
Arteriovenous graft (AVG) failure continues to be a life-threatening problem in haemodialysis. Graft failure can occur if the implanted graft is not well-matched to the vasculature of the patient. Likewise, stenosis often develops at the vein-graft anastomosis, contributing to thrombosis and early graft failure. To address this clinical need, a novel ink formulation comprised of ACMO/TMPTA/TMETA for 3D printing a AVG was developed (ACMO-AVG), in which the printed AVG was biocompatible and did not induce cytotoxicity. The ease of customizing the ACMO-AVG according to different requirements was demonstrated. Furthermore, the AVG displayed similar mechanical properties to the commercially available arteriovenous ePTFE graft (ePTFE-AVG). Unlike ePTFE-AVG, the ACMO-AVG displayed excellent anti-fouling characteristics because no plasma protein adsorption and platelet adhesion were detected on the luminal surfaces after 2 h of incubation. Similarly, exposure to human endothelial cells and human vascular smooth muscle cells did not result in any cell detection on the surfaces of the ACMO-AVG. Thus, the present study demonstrates a newly developed 3D printing ink formulation that can be successfully 3D printed into a clinically applicable vascular access used for haemodialysis.
Collapse
Affiliation(s)
- Bill Cheng
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Yue-Min Xing
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Nai-Chia Shih
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Jen-Po Weng
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| |
Collapse
|
2
|
Sanders WG, Li H, Zhuplatov I, He Y, Kim SE, Cheung AK, Agarwal J, Terry CM. Autologous fat transplants to deliver glitazone and adiponectin for vasculoprotection. J Control Release 2017; 264:237-246. [PMID: 28867378 DOI: 10.1016/j.jconrel.2017.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/06/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
The insulin sensitizing glitazone drugs, rosiglitazone (ROS) and pioglitazone (PGZ) both have anti-proliferative and anti-inflammatory effects and induce adipose tissue (fat) to produce the vaso-protective protein adiponectin. Stenosis due to intimal hyperplasia development often occurs after placement of arteriovenous synthetic grafts used for hemodialysis. This work was performed to characterize the in vitro and in vivo effects of ROS or PGZ incorporation in fat and to determine if fat/PGZ depots could decrease vascular hyperplasia development in a porcine model of hemodialysis arteriovenous graft stenosis. Powdered ROS or PGZ (6-6000μM) was mixed with fat explants and cultured. Drug release from fat was quantified by HPLC/MS/MS, and adiponectin and monocyte chemotactic protein-1 (MCP-1) levels in culture media were measured by ELISA. The effect of conditioned media from the culture of fat with ROS or PGZ on i) platelet-derived growth factor-BB (PDGF-BB)-stimulated proliferation of human venous smooth muscle cells (SMC) was measured by a DNA-binding assay, and ii) lipopolysaccharide (LPS)-induced human monocyte release of tumor necrosis factor-alpha (TNFα) was assessed by ELISA. In a porcine model, pharmacokinetics of PGZ from fat depots transplanted perivascular to jugular vein were assessed by HPLC/MS/MS, and retention of the fat depot was monitored by MRI. A porcine model of synthetic graft placed between carotid artery and ipsilateral jugular vein was used to assess effects of PGZ/fat depots on vascular hyperplasia development. Both ROS and PGZ significantly induced the release of adiponectin and inhibited release of MCP-1 from the fat. TNF production from monocytes stimulated with LPS was inhibited 50-70% in the presence of media conditioned by fat alone or fat and either drug. The proliferation of SMC was inhibited in the presence of media conditioned by fat/ROS cultures. Fat explants placed perivascular to the external jugular vein were retained, as confirmed by MRI at one week after placement. PGZ was detected in the fat depot, in the external jugular vein wall and in adjacent tissue at clinically relevant levels, whereas levels in plasma were below detection. External jugular vein exposed to fat incorporated with PGZ had increased adiponectin expression compared to vein exposed to fat alone. However, the development of hyperplasia within the arteriovenous synthetic grafts was unchanged by treatment with fat/PGZ depots compared to no treatment.
Collapse
Affiliation(s)
- William G Sanders
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, 295 Chipeta Way, Salt Lake City, UT, USA
| | - Huan Li
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, 295 Chipeta Way, Salt Lake City, UT, USA
| | - Ilya Zhuplatov
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, 295 Chipeta Way, Salt Lake City, UT, USA
| | - Yuxia He
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, 295 Chipeta Way, Salt Lake City, UT, USA
| | - Seong-Eun Kim
- Department of Radiology and Imaging Science, Utah Center for Advanced Imaging Research, University of Utah, 729 Arapeen Dr., Salt Lake City, UT, USA
| | - Alfred K Cheung
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, 295 Chipeta Way, Salt Lake City, UT, USA; Medical Service, Veterans Affairs Salt Lake City Healthcare System, 500 Foothill Dr., 151N, Salt Lake City, UT, USA
| | - Jayant Agarwal
- Division of Plastic and Reconstructive Surgery, School of Medicine, University of Utah, 30 N. 1900 E. 3B400, Salt Lake City, UT, USA
| | - Christi M Terry
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, 295 Chipeta Way, Salt Lake City, UT, USA.
| |
Collapse
|