1
|
Almeida-Nunes DL, Silva JPN, Nunes M, Silva PMA, Silvestre R, Dinis-Oliveira RJ, Bousbaa H, Ricardo S. Metformin Impairs Linsitinib Anti-Tumor Effect on Ovarian Cancer Cell Lines. Int J Mol Sci 2024; 25:11935. [PMID: 39596005 PMCID: PMC11594113 DOI: 10.3390/ijms252211935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Ovarian cancer (OC) remains one of the leading causes of cancer-related mortality among women. Targeting the insulin-like growth factor 1 (IGF-1) signaling pathway has emerged as a promising therapeutic strategy. Linsitinib, an IGF-1 receptor (IGF-1R) inhibitor, has shown potential in disrupting this pathway. Additionally, metformin, commonly used in the treatment of type 2 diabetes, has been studied for its anti-cancer properties due to its ability to inhibit metabolic pathways that intersect with IGF-1 signaling, making it a candidate for combination therapy in cancer treatments. This study explores the anti-cancer effects of linsitinib and metformin on OVCAR3 cells by the suppression of the IGF-1 signaling pathway by siRNA-mediated IGF-1 gene silencing. The goal is to evaluate their efficacy as therapeutic agents and to emphasize the critical role of this pathway in OC cell proliferation. Cellular viability was evaluated by resazurin-based assay, and apoptosis was assessed by flux cytometry. The results of this study indicate that the combination of linsitinib and metformin exhibits an antagonistic effect (obtained by SynergyFinder 2.0 Software), reducing their anti-neoplastic efficacy in OC cell lines. Statistical analyses were performed using ordinary one-way or two-way ANOVA, followed by Tukey's or Šídák's multiple comparison tests. While linsitinib shows promise as a therapeutic option for OC, further research is needed to identify agents that could synergize with it to enhance its therapeutic efficacy, like the combination with standard chemotherapy in OC (carboplatin and paclitaxel).
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (D.L.A.-N.); (P.M.A.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
| | - João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (H.B.)
| | - Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Patrícia M. A. Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (D.L.A.-N.); (P.M.A.S.); (R.J.D.-O.)
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (H.B.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine from University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (D.L.A.-N.); (P.M.A.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine from University of Porto (FMUP), 4050-319 Porto, Portugal
- FOREN—Forensic Science Experts, 1400-136 Lisboa, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (H.B.)
| | - Sara Ricardo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (D.L.A.-N.); (P.M.A.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (H.B.)
| |
Collapse
|
2
|
Kouroshnia A, Zeinali S, Irani S, Sadeghi A. Induction of apoptosis and cell cycle arrest in colorectal cancer cells by novel anticancer metabolites of Streptomyces sp. 801. Cancer Cell Int 2022; 22:235. [PMID: 35879795 PMCID: PMC9316808 DOI: 10.1186/s12935-022-02656-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer is the third and most significant cause of death and fourth most common cancer in the world. Chemotherapy can be introduced in the cases of locally or distantly invasive colorectal cancer. In recent years Actinomycetes, especially the genus Streptomyces, contain numerous bioactive compounds, some of which are known as important anti-tumor chemotherapy drugs. In this research, we aimed to explore the anti-cancer mode of action of Streptomyces sp. 801 on colorectal cancer cells in vitro conditions. Methods Fermented supernatant of strain Streptomyces sp. 801 isolated from soil showed maximum growth inhibition on human colorectal cancer cells. The cytotoxic effects of various concentrations of EtOAc extract from bacterial culture supernatant on HT-29, HCT 116 and SW480 cancer cells were surveyed using the MTT assay. Moreover, flow cytometry assays and Bax, Bcl-2, Cyclin D1 and P21 gene expressions were carried out to assess the apoptotic and cell cycle effects. Also, the scratch assay was performed to measure migration. Finally, Ethyl acetate (EtOAc) extract was analyzed by LC–MS to identify anti-cancer compounds. Results The cell viability of all three cell lines were decreased in a dose-dependent manner. The successful induction of apoptosis and cell cycle arrest at IC50 values, were confirmed by flow cytometry as well as by the mRNA expression levels of the genes involved in these processes. Scratch assays indicated the inhibition of cell migration in the cancer cell lines treated by Streptomyces sp. 801. Nine anti-cancer compounds of Streptomyces sp. 801 were detected by liquid chromatography–mass spectrometry (LC–MS) analysis. Conclusions These findings suggest that Streptomyces sp. 801 can be a source of promising anticancer metabolites. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Arghavan Kouroshnia
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
3
|
Umezawa K, Lin Y. Inhibition of matrix metalloproteinase expression and cellular invasion by NF-κB inhibitors of microbial origin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140412. [PMID: 32179183 DOI: 10.1016/j.bbapap.2020.140412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent extracellular matrix remodeling endopeptidases. MMPs cleave various matrix proteins such as collagen, elastin, gelatin and casein. MMPs are often implicated in pathological processes, such as cancer progression including metastasis. Meanwhile, microorganisms produce various secondary metabolites having unique structures. We designed and synthesized dehydroxymethylepoxyquinomicin (DHMEQ) based on the structure of epoxyquinomicin C derived from Amycolatopsis as an inhibitor of NF-κB. This compound inhibited cancer cell migration and invasion. Since DHMEQ is comparatively unstable in the body, we designed and synthesized a stable DHMEQ analog, SEMBL. SEMBL also inhibited cancer cell migration and invasion. We also looked for inhibitors of cancer cell migration and invasion from microbial culture filtrates. As a result, we isolated a known compound, ketomycin, from Actinomycetes. DHMEQ, SEMBL, and ketomycin are all NF-κB inhibitors, and inhibited the expression of MMPs in the inhibition of cellular migration and invasion. These are all compounds with comparatively low toxicity, and may be useful for the development of anti-metastasis agents.
Collapse
Affiliation(s)
- Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, Nagakute 480-1195, Japan.
| | - Yinzhi Lin
- Department of Molecular Target Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| |
Collapse
|
4
|
Chu X, Xue Y, Huo X, Wei J, Chen Y, Han R, Chen H, Su X, Zhang H, Gong Y, Chen J. Establishment and characterization of a novel cell line (cc‑006cpm8) of moderately/poorly differentiated colorectal adenocarcinoma derived from a primary tumor of a patient. Int J Oncol 2019; 55:243-256. [PMID: 31115570 DOI: 10.3892/ijo.2019.4806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/14/2019] [Indexed: 11/06/2022] Open
Abstract
In the present study, the cc‑006cpm8 novel colon cell line was established from a sample of right colorectal adenocarcinoma obtained from a woman with liver metastasis. It was possible to culture this cell line for ≥100 passages in vitro with vigorous growth. Morphologically, the cells grew as several layers with tight adhesion to the surface of the culture plate. The morphological, immunological and ultrastructural features of these cells suggested their epithelial origin. The characterization of this cell line indicated a doubling time of 27 h, a colony forming efficiency of 73.2% in semisolid media and a plate efficiency of 66.5% in liquid culture. The modal number of chromosomes was 50. In vivo, the cc‑006cpm8 cells underwent tumorigenesis in all nude mice used. Immunohistochemical analysis demonstrated that mutS homolog 2 (MSH2) and MSH6 were expressed; however, mutL homolog 1 and postmeiotic segregation 2 were downregulated in cc‑006cpm8 cells. To determine the mutation profile of the cell line analyzed, exome capture DNA sequencing was performed. The results revealed 20 hypermutated exons comprising single nucleotide polymorphisms, and insertion and deletions (InDels), including single nucleotide variants of mucin (MUC)19, MUC16, MUC12, filaggrin and AHNAK nucleoprotein 2, and InDels of β defensin‑126, microRNA‑3665, WNK lysine deficient protein kinase 1 and SLAIN motif‑containing protein 1. In addition, commonly mutated genes in colorectal cancer and exon mutations of genes in cc‑006cpm8 cells were analyzed, including adenomatous polyposis coli, tumor protein p53, Drosophila mothers against decapentaplegic 4, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit α and Kirsten rat sarcoma, and genes associated with the DNA mismatch repair pathway were investigated.
Collapse
Affiliation(s)
- Xia Chu
- Cancer Center, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Yiqi Xue
- Cancer Center, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Xinying Huo
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210046, P.R. China
| | - Jingsun Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210046, P.R. China
| | - Yuetong Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210046, P.R. China
| | - Rongbo Han
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210046, P.R. China
| | - Hong Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210046, P.R. China
| | - Xinyu Su
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210046, P.R. China
| | - Honghong Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210046, P.R. China
| | - Yang Gong
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210046, P.R. China
| | - Jinfei Chen
- Cancer Center, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| |
Collapse
|
5
|
Isolation of ketomycin from Actinomycetes as an inhibitor of 2D and 3D cancer cell invasion. J Antibiot (Tokyo) 2018; 72:148-154. [PMID: 30510246 DOI: 10.1038/s41429-018-0129-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/17/2023]
Abstract
Inhibitors of cancer cell migration and invasion should be useful to inhibit metastasis. Then, we have screened microbial culture filtrates for the inhibitors of cancer cell migration. As a result, we isolated an antibiotic ketomycin from a culture filtrate of Actinomycetes SF2912 as an inhibitor of cancer cell migration. It is a known antibiotic, but its biological activity on mammalian cells has not been reported. Ketomycin inhibited cellular migration and invasion in human breast carcinoma MDA-MB-231 and MCF-7 cells at the non-toxic concentrations. Ketomycin decreased the expressions of MMP-9 and MMP-11 in MDA-MB-231 cells. Knockdown of each gene by siRNA inhibited the cellular migration and invasion. Ketomycin was then found to inhibit the cellular NF-κB activity that may be involved in the upstream signaling. For the mechanism of NF-κB inhibition, ketomycin inhibited autophosphorylation of IKK-α/IKK-β. Ketomycin also inhibited the 3D-invasion of MDA-MB-231 cells at the non-toxic concentrations. Thus, ketomycin having a comparatively simple structure may become a seed of anti-metastasis agent.
Collapse
|
6
|
Abstract
Ovarian cancer (OC) is most lethal malignancy among all gynecological cancer. Large bodies of evidences suggest that mitochondrial-derived ROS play a critical role in the development and progression of OC. Paraoxonase 2 (PON2) is a membrane-associated lactonase with anti-oxidant properties. PON2 deficiency aggravates mitochondrial ROS formation, systemic inflammation, and atherosclerosis. The role of PON2 in cancer development remains unknown. In this report, in human, we identified that PON2 expression is higher in early stages (but not in late stages) of OC when compared to normal tissue. Using a mouse xenograft model of OC, we demonstrate that overexpression of PON2 prevents tumor formation. Mechanistically, PON2 decreases OC cell proliferation by inhibiting insulin like growth factor-1 (IGF-1) expression and signaling. Intriguingly, PON2 reduces c-Jun-mediated transcriptional activation of IGF-1 gene by decreasing mitochondrial superoxide generation. In addition, PON2 impairs insulin like growth factor-1 receptor (IGF-1R) signaling in OC cells by altering cholesterol homeostasis, which resulted in reduced caveolin-1/IGF-1R interaction and IGF-1R phosphorylation. Taken together, we report for the first time that PON2 acts as a tumor suppressor in the early stage of OC by reducing IGF-1 production and its signaling, indicating PON2 activation might be a fruitful strategy to inhibit early stage ovarian tumor.
Collapse
|
7
|
Liu M, Zhang X, Long C, Xu H, Cheng X, Chang J, Zhang C, Zhang C, Wang X. Collagen-based three-dimensional culture microenvironment promotes epithelial to mesenchymal transition and drug resistance of human ovarian cancerin vitro. RSC Adv 2018; 8:8910-8919. [PMID: 35539845 PMCID: PMC9078576 DOI: 10.1039/c7ra13742g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/15/2018] [Indexed: 11/21/2022] Open
Abstract
OV-NC and OV-206 cells cultured in collagen I hydrogel scaffolds, could gradually generate multicellular spheroids.
Collapse
Affiliation(s)
- Ming Liu
- Department of Cell Biology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Xiuzhen Zhang
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Canling Long
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Hong Xu
- Laboratory of Medical Function
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Xu Cheng
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Jingjie Chang
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Chengzhao Zhang
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Chenghong Zhang
- Morphological Laboratory
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Xiuli Wang
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| |
Collapse
|
8
|
Novel p-terphenyl glycoside with a rare 2,6-dideoxyhexopyranose moiety from Actinomycete strain SF2911 that inhibits cancer cell migration. J Antibiot (Tokyo) 2017; 70:987-990. [DOI: 10.1038/ja.2017.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 12/27/2022]
|
9
|
Inhibition of MMP-2-mediated cellular invasion by NF-κB inhibitor DHMEQ in 3D culture of breast carcinoma MDA-MB-231 cells: A model for early phase of metastasis. Biochem Biophys Res Commun 2017; 485:76-81. [PMID: 28188787 DOI: 10.1016/j.bbrc.2017.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 01/17/2023]
Abstract
The three-dimensional (3D) culture of cancer cells provides an environmental condition closely related to the condition in vivo. It would especially be an ideal model for the early phase of metastasis, including the detachment and invasion of cancer cells from the primary tumor. In one hand, dehydroxymethylepoxyquinomicin (DHMEQ), an NF-κB inhibitor, is known to inhibit cancer progression and late phase metastasis in animal experiments. In the present research, we studied the inhibitory activity on the 3D invasion of breast carcinoma cells. Breast carcinoma MDA-MB-231 cells showed the most active invasion from spheroid among the cell lines tested. DHMEQ inhibited the 3D invasion of cells at the 3D-nontoxic concentrations. The PCR array analysis using RNA isolated from the 3D on-top cultured cells indicated that matrix metalloproteinase (MMP)-2 expression is lowered by DHMEQ. Knockdown of MMP-2 and an MMP inhibitor, GM6001, both inhibited the invasion. DHMEQ was shown to inhibit the promoter activity of MMP-2 in the reporter assay. Thus, DHMEQ was shown to inhibit NF-κB/MMP-2-dependent cellular invasion in 3D-cultured MDA-MB-231 cells, suggesting that DHMEQ would inhibit the early phase of metastasis.
Collapse
|