1
|
Chen Z, Dong Z, Zeng R, Xu M, Zhang Y, Dan Q, Wang G. Association between single nucleotide polymorphisms in EPAS1 and PPARA genes and high altitude polycythemia in Chinese Tibetan population. Front Genet 2025; 16:1519108. [PMID: 40115819 PMCID: PMC11922876 DOI: 10.3389/fgene.2025.1519108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025] Open
Abstract
Background High altitude polycythemia (HAPC) is a disease with high morbidity and great harm in high altitude populations. It has been shown that Single Nucleotide Polymorphisms (SNPs) correlate with the genetic basis of adaptation to plateau hypoxia in Tibetan populations. The EPAS1 and PPARA genes are involved in hypoxia adaptation by encoding transcription factors in Tibetan populations at high altitude. The aim of this study was to investigate the association of EPAS1 and PPARA gene locus polymorphisms with genetic susceptibility to HAPC in the Chinese Tibetan population. Methods We included 78 HAPC patients and 84 healthy controls, and genotyped the EPAS1 gene SNP loci (rs6735530, rs6756667, rs7583392, and rs12467821) and PPARA rs6520015 by using TaqMan polymerase chain reaction. Logistic regression was used to analyze the association between these SNPs and HAPC; interactions between SNPs were also predicted by multifactorial dimensionality reduction (MDR) analysis. Results We found that the PPARA rs6520015 polymorphism was not associated with the risk of HAPC in the Chinese Tibetan population; EPAS1 rs6735530, rs6756667, rs7583392, and rs12467821 increased the risk of HAPC in some models. Haplotype TCAGC decreases the risk of HAPC; Haplotype TTGAT increases the risk of HAPC; and EPAS1 rs7583392 is in complete linkage disequilibrium with rs12467821. The best prediction model was the EPAS1 rs6756667 unit point model, but the P value was greater than 0.05 in all three models, which was not statistically significant. Conclusion The present findings suggest that among the Tibetan population in China, There is an association between EPAS1 rs6735530, rs6756667, rs7583392, and rs12467821 and the risk of HAPC, and that there is no significant correlation between PPARA rs6520015 and the risk of HAPC.
Collapse
Affiliation(s)
- Ziyi Chen
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Zhaomei Dong
- Department of Reproductive Medicine, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Rong Zeng
- Department of Geriatrics, The Second People's Hospital of Kunming, Kunming, Yunnan, China
| | - Mengna Xu
- Department of Infection, Puer People's Hospital, Puer, Yunnan, China
| | - Yuanyuan Zhang
- Medicine Department, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Qu Dan
- Department of Laboratory, Tibet Autonomous Region People's Hospital, Lhasa, Tibet, China
| | - Guangming Wang
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| |
Collapse
|
2
|
Babin CH, Leiva FP, Verberk WCEP, Rees BB. Evolution of Key Oxygen-Sensing Genes Is Associated with Hypoxia Tolerance in Fishes. Genome Biol Evol 2024; 16:evae183. [PMID: 39165136 PMCID: PMC11370800 DOI: 10.1093/gbe/evae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Low dissolved oxygen (hypoxia) is recognized as a major threat to aquatic ecosystems worldwide. Because oxygen is paramount for the energy metabolism of animals, understanding the functional and genetic drivers of whole-animal hypoxia tolerance is critical to predicting the impacts of aquatic hypoxia. In this study, we investigate the molecular evolution of key genes involved in the detection of and response to hypoxia in ray-finned fishes: the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) oxygen-sensing system, also known as the EGLN (egg-laying nine)-HIF oxygen-sensing system. We searched fish genomes for HIFA and EGLN genes, discovered new paralogs from both gene families, and analyzed protein-coding sites under positive selection. The physicochemical properties of these positively selected amino acid sites were summarized using linear discriminants for each gene. We employed phylogenetic generalized least squares to assess the relationship between these linear discriminants for each HIFA and EGLN and hypoxia tolerance as reflected by the critical oxygen tension (Pcrit) of the corresponding species. Our results demonstrate that Pcrit in ray-finned fishes correlates with the physicochemical variation of positively selected sites in specific HIFA and EGLN genes. For HIF2A, two linear discriminants captured more than 90% of the physicochemical variation of these sites and explained between 20% and 39% of the variation in Pcrit. Thus, variation in HIF2A among fishes may contribute to their capacity to cope with aquatic hypoxia, similar to its proposed role in conferring tolerance to high-altitude hypoxia in certain lineages of terrestrial vertebrates.
Collapse
Affiliation(s)
- Courtney H Babin
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Félix P Leiva
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
3
|
Tregub PP, Komleva YK, Kulikov VP, Chekulaev PA, Tregub OF, Maltseva LD, Manasova ZS, Popova IA, Andriutsa NS, Samburova NV, Salmina AB, Litvitskiy PF. Relationship between Hypoxia and Hypercapnia Tolerance and Life Expectancy. Int J Mol Sci 2024; 25:6512. [PMID: 38928217 PMCID: PMC11204369 DOI: 10.3390/ijms25126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic-hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic-hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic-hypoxic training methods.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
| | - Yulia K. Komleva
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia
| | - Pavel A. Chekulaev
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Larisa D. Maltseva
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia S. Andriutsa
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia V. Samburova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Li X, Xu S, Li X, Wang Y, Sheng Y, Zhang H, Yang W, Yuan D, Jin T, He X. Novel insight into the genetic signatures of altitude adaptation related body composition in Tibetans. Front Public Health 2024; 12:1355659. [PMID: 38807991 PMCID: PMC11130355 DOI: 10.3389/fpubh.2024.1355659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Background The Tibetan population residing in high-altitude (HA) regions has adapted to extreme hypoxic environments. However, there is limited understanding of the genetic basis of body compositions in Tibetan population adapted to HA. Methods We performed a genome-wide association study (GWAS) to identify genetic variants associated with HA and HA-related body composition traits. A total of 755,731 single nucleotide polymorphisms (SNPs) were genotyped using the precision medicine diversity array from 996 Tibetan college students. T-tests and Pearson correlation analysis were used to estimate the association between body compositions and altitude. The mixed linear regression identified the SNPs significantly associated with HA and HA-related body compositions. LASSO regression was used to screen for important SNPs in HA and body compositions. Results Significant differences were observed in lean body mass (LBW), muscle mass (MM), total body water (TBW), standard weight (SBW), basal metabolic rate (BMR), total protein (TP), and total inorganic salt (Is) in different altitudes stratification. We identified three SNPs in EPAS1 (rs1562453, rs7589621 and rs7583392) that were significantly associated with HA (p < 5 × 10-7). GWAS analysis of 7 HA-related body composition traits, we identified 14 SNPs for LBM, 11 SNPs for TBW, 15 SNPs for MM, 16 SNPs for SBW, 9 SNPs for BMR, 12 SNPs for TP, and 26 SNPs for Is (p < 5.0 × 10-5). Conclusion These findings provide insight into the genetic basis of body composition in Tibetan college students adapted to HA, and lay the foundation for further investigation into the molecular mechanisms underlying HA adaptation.
Collapse
Affiliation(s)
- Xuguang Li
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Shilin Xu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xuemei Li
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yuhe Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Healthcare, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yemeng Sheng
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Hengxun Zhang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Healthcare, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Wei Yang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Emergency, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Tianbo Jin
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
5
|
Wang Y, Lin A, He R, Chen C, Zeng X, Pan Y, Mao C, Xie C, Huang D, Deng Y, Zhang X, Lu J, Wang X. The role of EPAS1 polymorphisms on COPD susceptibility in southern Chinese. Heliyon 2023; 9:e20226. [PMID: 37876439 PMCID: PMC10590761 DOI: 10.1016/j.heliyon.2023.e20226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
Objective COPD is the most common chronic respiratory disease with complex environmental and genetic etiologies. It was reported that EPAS1 might participate in the occurrence and development of respiratory diseases. However, the association between EPAS1 and COPD was unclear. Methods First, a case-control study enrolling 1130 COPD patients and 1115 healthy controls in Guangzhou was conducted to clarify the association between EPAS1 polymorphisms and COPD susceptibility. Secondly, a prevalence study recruited 882 participants in Gansu to verify the effect of positive polymorphisms on lung function. Finally, the 10-year absolute risk considering environmental factors and genetic variations was calculated by the method of Gail and Bruzzi. Results EPAS1 rs13419896 AA genotype reduced COPD risk in southern Chinese (AA vs. GG: adjusted OR = 0.689, 95% CI = 0.498-0.955; AA vs. GG/GA: adjusted OR = 0.701, 95% CI = 0.511-0.962). Further, the rs13419896 A allele was significantly associated with higher pre-FEV1/pre-FVC in both the Guangzhou and Gansu populations (P < 0.05). Smoking status, coal as fuels, education level, and rs13419896 G > A were finally retained to develop a relative risk model for males. Smoking status, biomass as fuels, and rs13419896 G > A were retained in the female model. The population-attributable risk of the male or female model was 0.457 (0.283-0.632) and 0.421 (0.227-0.616), respectively. Conclusions This study first revealed that EPAS1 rs13419896 G > A decreased COPD susceptibility and could be a genetic marker to predict the 10-year absolute risk for COPD.
Collapse
Affiliation(s)
- Yunchao Wang
- Institute of Basic Medicine, Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, 730030, China
| | - Ao Lin
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Institute of Public Health, Guangzhou Medical University, Guangzhou, Guangdong Province, 510000, China
| | - Ruiqi He
- Institute of Basic Medicine, Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, 730030, China
| | - Cuiyi Chen
- Department of Respiratory Medicine, SSL Central Hospital of Dongguan City, Dongguan, Guangdong Province, 523000, China
| | - Xiaobin Zeng
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Institute of Public Health, Guangzhou Medical University, Guangzhou, Guangdong Province, 510000, China
| | - Yujie Pan
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Institute of Public Health, Guangzhou Medical University, Guangzhou, Guangdong Province, 510000, China
| | - Chun Mao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Institute of Public Health, Guangzhou Medical University, Guangzhou, Guangdong Province, 510000, China
| | - Chenli Xie
- Department of Respiratory and Critical Care Medicine, Dongguan Binwan Central Hospital, Dongguan, Guangdong Province, 523000, China
| | - Dongsheng Huang
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, 515100, China
| | - Yibin Deng
- Centre for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, 533000, China
| | - Xuhui Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu Province, 730000, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Institute of Public Health, Guangzhou Medical University, Guangzhou, Guangdong Province, 510000, China
| | - Xinhua Wang
- Institute of Basic Medicine, Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, 730030, China
| |
Collapse
|
6
|
Tashi QZ, Tsering SB, Zhou NN, Zhang Y, Huang YJ, Jia J, Li TJ. A Study on the Molecular Mechanism of High Altitude Heart Disease in Children. Pharmgenomics Pers Med 2022; 15:721-731. [PMID: 35903087 PMCID: PMC9316483 DOI: 10.2147/pgpm.s356206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
Objective High altitude heart disease (HAHD) is a common pediatric disease in high altitude areas. It usually occurs in people who have lived for a long time or have lived for more than 2500m above sea level. Its common inducement is respiratory tract infection. The clinical differential diagnosis is difficult because the symptoms of HAHD are similar to those of congenital heart disease; Due to the limitation of medical conditions, many patients are in the state of losing follow-up or not seeking medical treatment, resulting in poor prognosis of HAHD and becoming a high-altitude disease with high mortality. Clarifying the molecular mechanism of HAHD, developing early molecular screening technology and accurate treatment methods of HAHD are the key to improve the ability of prevention and treatment of HAHD. Methods First, the literature in the PubMed and CNKI databases were screened based on keywords and abstracts. Then, the literature for the study was identified based on the fitness between the content of the literature, the research objectives, and the timeliness of the literature. Finally, a systematic molecular mechanism of HAHD was established by investigating the literature and sorting out the genetic adaptations of Tibetan populations compared with low-altitude populations that migrated to the plateau. Results With the investigation of the 48 papers screened, it was found that genes capable of enhancing the hypoxic ventilatory response and resistance to pulmonary hypertension were all correlated with the hypoxia-inducible factor (HIF) pathway, consisting mainly of three pathways, HIF-1α, HIF-2α, and NO. Conclusion The low prevalence of HAHD in Tibetan aboriginal children was mainly due to the genetic adaptation of the Tibetan population to the high altitude environment, which coordinated the cellular response to hypoxia by regulating the downstream hypoxia control genes in the HIF pathway.
Collapse
Affiliation(s)
- Qu-Zhen Tashi
- Department of Pediatrics, Shigatse Peopel's Hospital, Shigatse, Tibet, 857000, People’s Republic of China
| | - Sang-Bu Tsering
- Department of Pediatrics, Shigatse Peopel's Hospital, Shigatse, Tibet, 857000, People’s Republic of China
| | - Na-Ni Zhou
- Fujungenetics Technologies Inc. Shanghai, Shanghai, 200333, People’s Republic of China
| | - Yi Zhang
- Fujungenetics Technologies Inc. Shanghai, Shanghai, 200333, People’s Republic of China
| | - Yu-Juan Huang
- Department of Emergency, Children’s Hospital of Shanghai, Shanghai, 200062, People’s Republic of China
| | - Jia Jia
- Fujungenetics Technologies Inc. Shanghai, Shanghai, 200333, People’s Republic of China
- Jia Jia, Fulgent Technologies Inc, No. 70 of Tongchuan Road, Putuo District, Shanghai, 200333, People’s Republic of China, Tel +86 18658176000, Email
| | - Ting-Jun Li
- Department of Emergency, Children’s Hospital of Shanghai, Shanghai, 200062, People’s Republic of China
- Correspondence: Ting-Jun Li, Department of Emergency, Children’s Hospital of Shanghai, No. 355 of Huding Road, Putuo District, Shanghai, 200062, People’s Republic of China, Tel +86 18930590701, Email
| |
Collapse
|
7
|
Omotoso O, Gladyshev VN, Zhou X. Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Front Cell Dev Biol 2021; 9:704966. [PMID: 34733838 PMCID: PMC8558438 DOI: 10.3389/fcell.2021.704966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Contemporary studies on aging and longevity have largely overlooked the role that adaptation plays in lifespan variation across species. Emerging evidence indicates that the genetic signals of extended lifespan may be maintained by natural selection, suggesting that longevity could be a product of organismal adaptation. The mechanisms of adaptation in long-lived animals are believed to account for the modification of physiological function. Here, we first review recent progress in comparative biology of long-lived animals, together with the emergence of adaptive genetic factors that control longevity and disease resistance. We then propose that hitchhiking of adaptive genetic changes is the basis for lifespan changes and suggest ways to test this evolutionary model. As individual adaptive or adaptation-linked mutations/substitutions generate specific forms of longevity effects, the cumulative beneficial effect is largely nonrandom and is indirectly favored by natural selection. We consider this concept in light of other proposed theories of aging and integrate these disparate ideas into an adaptive evolutionary model, highlighting strategies in decoding genetic factors of lifespan control.
Collapse
Affiliation(s)
- Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| |
Collapse
|
8
|
Zou Y, Liu Z, Li H, Hou L, Pang J, Liu X, Zejipuchi, Tian L, Zhang Q, Ma C, Yu S, Wang D, Guo X, Cheng X, Yang H, Qiu L. Evaluation of bone metabolism-associated biomarkers in Tibet, China. J Clin Lab Anal 2021; 35:e24068. [PMID: 34699640 PMCID: PMC8649332 DOI: 10.1002/jcla.24068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022] Open
Abstract
Aim To measure and evaluate the distribution and possible contributing factors of seven bone metabolism‐associated biomarkers in Tibet, a plateau province of China. Methods A total of 1615 individuals were recruited from Tibet at three different altitudes. The levels and possible contributing factors of serum calcium, serum phosphorus, ALP, 25OHD, PINP, CTX, and PTH were evaluated. Results In total, 1246 Tibetan adults (males: n = 543) were eventually enrolled in this study. Multiple linear regression recognized age, sex, altitude, and BMI as the major effect factors. The levels of ALP, PINP, and CTX in males continuously decreased with age; however, those in females increased after approximately 39 years of age. Males had higher 25OHD levels (23.9 vs. 15.4 ng/ml) but lower levels of serum phosphorus (1.12 vs. 1.19 mmol/L) and PTH (41.3 vs. 47.4 pg/ml) than females. Before the age of 50, males had higher levels of calcium, ALP, PINP, and CTX than females, and the opposite trend was observed after the age of 50. The highest levels of serum calcium and phosphorus and the lowest levels of PINP and CTX were found in the Shigatse/Lhasa region, suggesting a better bone metabolism status. Compared with reports from plain areas of China, significantly higher levels of PINP (65.3 vs. 49.36 ng/ml) and CTX (0.46 vs. 0.37 ng/ml) were recorded in Tibetan adults. Conclusion A more active bone turnover status was found in Tibetan adults than in individuals from the plain areas of China.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Zhijuan Liu
- Department of Laboratory Medicine, People's Hospital of Tibet Autonomous Region, Tibet Lhasa, China
| | - Honglei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Li'an Hou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jinrong Pang
- Department of Laboratory Medicine, People's Hospital of Tibet Autonomous Region, Tibet Lhasa, China
| | - Xiaoxing Liu
- Department of Laboratory Medicine, Ali District People's Hospital, Tibet Ali, China
| | - Zejipuchi
- Department of Laboratory Medicine, Sang Zhu Zi District People's Hospital, Tibet, Shigatse City, China
| | - Liping Tian
- Department of Laboratory Medicine, Maternal and Child Health Hospital, Tibet City, China
| | - Qi Zhang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xiuzhi Guo
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Hongyan Yang
- Department of Laboratory Medicine, People's Hospital of Tibet Autonomous Region, Tibet Lhasa, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Mainieri G, Montini A, Nicotera A, Di Rosa G, Provini F, Loddo G. The Genetics of Sleep Disorders in Children: A Narrative Review. Brain Sci 2021; 11:1259. [PMID: 34679324 PMCID: PMC8534132 DOI: 10.3390/brainsci11101259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep is a universal, highly preserved process, essential for human and animal life, whose complete functions are yet to be unravelled. Familial recurrence is acknowledged for some sleep disorders, but definite data are lacking for many of them. Genetic studies on sleep disorders have progressed from twin and family studies to candidate gene approaches to culminate in genome-wide association studies (GWAS). Several works disclosed that sleep-wake characteristics, in addition to electroencephalographic (EEG) sleep patterns, have a certain degree of heritability. Notwithstanding, it is rare for sleep disorders to be attributed to single gene defects because of the complexity of the brain network/pathways involved. Besides, the advancing insights in epigenetic gene-environment interactions add further complexity to understanding the genetic control of sleep and its disorders. This narrative review explores the current genetic knowledge in sleep disorders in children, following the International Classification of Sleep Disorders-Third Edition (ICSD-3) categorisation.
Collapse
Affiliation(s)
- Greta Mainieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
| | - Angelica Montini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
| | - Antonio Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.N.); (G.D.R.)
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.N.); (G.D.R.)
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | | |
Collapse
|
10
|
Genetic polymorphisms associated with high-altitude adaptation in a Baltí population. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Zhang JH, Shen Y, Liu C, Yang J, Yang YQ, Zhang C, Bian SZ, Yu J, Gao XB, Zhang LP, Ke JB, Yuan FZY, Pan WX, Guo ZN, Huang L. EPAS1 and VEGFA gene variants are related to the symptoms of acute mountain sickness in Chinese Han population: a cross-sectional study. Mil Med Res 2020; 7:35. [PMID: 32718338 PMCID: PMC7385974 DOI: 10.1186/s40779-020-00264-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND More people ascend to high altitude (HA) for various activities, and some individuals are susceptible to HA illness after rapidly ascending from plains. Acute mountain sickness (AMS) is a general complaint that affects activities of daily living at HA. Although genomic association analyses suggest that single nucleotide polymorphisms (SNPs) are involved in the genesis of AMS, no major gene variants associated with AMS-related symptoms have been identified. METHODS In this cross-sectional study, 604 young, healthy Chinese Han men were recruited in June and July of 2012 in Chengdu, and rapidly taken to above 3700 m by plane. Basic demographic parameters were collected at sea level, and heart rate, pulse oxygen saturation (SpO2), systolic and diastolic blood pressure and AMS-related symptoms were determined within 18-24 h after arriving in Lhasa. AMS patients were identified according to the latest Lake Louise scoring system (LLSS). Potential associations between variant genotypes and AMS/AMS-related symptoms were identified by logistic regression after adjusting for potential confounders (age, body mass index and smoking status). RESULTS In total, 320 subjects (53.0%) were diagnosed with AMS, with no cases of high-altitude pulmonary edema or high-altitude cerebral edema. SpO2 was significantly lower in the AMS group than that in the non-AMS group (P = 0.003). Four SNPs in hypoxia-inducible factor-related genes were found to be associated with AMS before multiple hypothesis testing correction. The rs6756667 (EPAS1) was associated with mild gastrointestinal symptoms (P = 0.013), while rs3025039 (VEGFA) was related to mild headache (P = 0.0007). The combination of rs6756667 GG and rs3025039 CT/TT further increased the risk of developing AMS (OR = 2.70, P < 0.001). CONCLUSIONS Under the latest LLSS, we find that EPAS1 and VEGFA gene variants are related to AMS susceptibility through different AMS-related symptoms in the Chinese Han population; this tool might be useful for screening susceptible populations and predicting clinical symptoms leading to AMS before an individual reaches HA. TRIAL REGISTRATION Chinese Clinical Trial Registration, ChiCTR-RCS-12002232 . Registered 31 May 2012.
Collapse
Affiliation(s)
- Ji-Hang Zhang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yang Shen
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jie Yang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Qi Yang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chen Zhang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shi-Zhu Bian
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jie Yu
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xu-Bin Gao
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lai-Ping Zhang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing-Bin Ke
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Fang-Zheng-Yuan Yuan
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wen-Xu Pan
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhi-Nian Guo
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lan Huang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
12
|
Kong X, Dong X, Yang S, Qian J, Yang J, Jiang Q, Li X, Wang B, Yan D, Lu S, Zhu L, Li G, Li M, Yi S, Deng M, Sun L, Zhou X, Mao H, Gou X. Natural selection on TMPRSS6 associated with the blunted erythropoiesis and improved blood viscosity in Tibetan pigs. Comp Biochem Physiol B Biochem Mol Biol 2019; 233:11-22. [PMID: 30885835 DOI: 10.1016/j.cbpb.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Tibetan pigs, indigenous to Tibetan plateau, are well adapted to hypoxia. So far, there have been not any definitively described genes and functional sites responsible for hypoxia adaptation for the Tibetan pig. The whole genome-wide association studies in human suggested that genetic variations in TMPRSS6 was associated with hemoglobin concentration (HGB) and red cell counts (RBC). Here we conducted resequencing of the nearly entire genomic region (40.1 kb) of the candidate gene TMPRSS6 in 40 domestic pigs and 40 wild boars along continuous altitudes and identified 708 SNPs, in addition to an indel (CGTG/----) in the intron 10. We conduct the CGTG indel in 838 domestic pigs, both the CGTG deletion frequency and the pairwise r2 linkage disequilibrium showed an increase with elevated altitudes, suggesting that TMPRSS6 has been under Darwinian positive selection. As the conserved core sequence of hypoxia-response elements (HREs), the deletion of CGTG in Tibetan pigs decreased the expression levels of TMPRSS6 mRNA and protein in the liver revealed by real-time quantitative PCR and western blot, respectively. We compared domestic pigs and Tibetan pigs living continuous altitudes, found that the blood-related traits with the increase of altitude, however, the HGB did not increase with the elevation in Tibetan pigs. Genotype association analysis results dissected a genetic effect on reducing HGB by 13.25 g/L in Gongbo'gyamda Tibetan pigs, decreasing mean corpuscular volume (MCV) by 4.79 fl in Diqing Tibetan pigs. In conclusion, the CGTG deletion of TMPRSS6 resulted in lower HGB and smaller MCV, which could reflect a blunting erythropoiesis and improving blood viscosity as well as erythrocyte deformability. It remains to be determined whether a blunting of erythropoiesis for TMPRSS6 or others genetic effects are the physiological adaptations among Tibetan pigs.
Collapse
Affiliation(s)
- Xiaoyan Kong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuli Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinhua Qian
- Department of Animal Science, Yuxi Agriculture Vocational-Technical College, Yuxi, Yunnan, China
| | - Jianfa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Xingrun Li
- Department of Animal Science, Dali Vocational and Technical College of Agriculture and Forestry, Dali, Yunnan, China
| | - Bo Wang
- Research Experimental Center, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gen Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minjuan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shengnan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mingyue Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Liyuan Sun
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaoxia Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Huaming Mao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Xiao Gou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
13
|
Arciero E, Kraaijenbrink T, Asan, Haber M, Mezzavilla M, Ayub Q, Wang W, Pingcuo Z, Yang H, Wang J, Jobling MA, van Driem G, Xue Y, de Knijff P, Tyler-Smith C. Demographic History and Genetic Adaptation in the Himalayan Region Inferred from Genome-Wide SNP Genotypes of 49 Populations. Mol Biol Evol 2018; 35:1916-1933. [PMID: 29796643 PMCID: PMC6063301 DOI: 10.1093/molbev/msy094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India, or Tibet at over 500,000 SNPs, and analyzed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 and Egl-9 Family Hypoxia Inducible Factor 1 loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.
Collapse
Affiliation(s)
- Elena Arciero
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Thirsa Kraaijenbrink
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Asan
- BGI-Shenzhen, Shenzhen, China
| | - Marc Haber
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Massimo Mezzavilla
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - Qasim Ayub
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia Genomics Facility, Selangor Darul Ehsan, Malaysia
- School of Science, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | | | - Zhaxi Pingcuo
- The Third People’s Hospital of the Tibet Autonomous Region, Lhasa, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Science, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Science, Hangzhou, China
| | - Mark A Jobling
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Yali Xue
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
14
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
15
|
Hughes BH, Brinton JT, Ingram DG, Halbower AC. The Impact of Altitude on Sleep-Disordered Breathing in Children Dwelling at High Altitude: A Crossover Study. Sleep 2018; 40:3932553. [PMID: 28934528 DOI: 10.1093/sleep/zsx120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Study Objectives Sleep-disordered breathing (SDB) is prevalent among children and is associated with adverse health outcomes. Worldwide, approximately 250 million individuals reside at altitudes higher than 2000 meters above sea level (masl). The effect of chronic high-altitude exposure on children with SDB is unknown. This study aims to determine the impact of altitude on sleep study outcomes in children with SDB dwelling at high altitude. Methods A single-center crossover study was performed to compare results of high-altitude home polysomnography (H-PSG) with lower altitude laboratory polysomnography (L-PSG) in school-age children dwelling at high altitude with symptoms consistent with SDB. The primary outcome was apnea-hypopnea index (AHI), with secondary outcomes including obstructive AHI; central AHI; and measures of oxygenation, sleep quality, and pulse rate. Results Twelve participants were enrolled, with 10 included in the final analysis. Median altitude was 1644 masl on L-PSG and 2531 masl on H-PSG. Median AHI was 2.40 on L-PSG and 10.95 on H-PSG. Both obstructive and central respiratory events accounted for the difference in AHI. Oxygenation and sleep fragmentation were worse and pulse rate higher on H-PSG compared to L-PSG. Conclusions These findings reveal a clinically substantial impact of altitude on respiratory, sleep, and cardiovascular outcomes in children with SDB who dwell at high altitude. Within this population, L-PSG underestimates obstructive sleep apnea and central sleep apnea compared to H-PSG. Given the shortage of high-altitude pediatric sleep laboratories, these results suggest a role for home sleep apnea testing for children residing at high altitude.
Collapse
Affiliation(s)
- Benjamin H Hughes
- School of Medicine, Department of Pediatrics, The University of Colorado Anschutz Medical Campus, Aurora, CO.,The Breathing Institute, Section of Pediatric Pulmonary Medicine, Children's Hospital Colorado, Aurora, CO
| | - John T Brinton
- School of Medicine, Department of Pediatrics, The University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - David G Ingram
- Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas City, MO.,Department of Pulmonology and Sleep Medicine, Children's Mercy Hospital, Kansas City, MO
| | - Ann C Halbower
- School of Medicine, Department of Pediatrics, The University of Colorado Anschutz Medical Campus, Aurora, CO.,The Breathing Institute, Section of Pediatric Pulmonary Medicine, Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
16
|
Ghosh MC, Zhang DL, Ollivierre H, Eckhaus MA, Rouault TA. Translational repression of HIF2α expression in mice with Chuvash polycythemia reverses polycythemia. J Clin Invest 2018; 128:1317-1325. [PMID: 29480820 DOI: 10.1172/jci97684] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Chuvash polycythemia is an inherited disease caused by a homozygous germline VHLR200W mutation, which leads to impaired degradation of HIF2α, elevated levels of serum erythropoietin, and erythrocytosis/polycythemia. This phenotype is recapitulated by a mouse model bearing a homozygous VhlR200W mutation. We previously showed that iron-regulatory protein 1-knockout (Irp1-knockout) mice developed erythrocytosis/polycythemia through translational derepression of Hif2α, suggesting that IRP1 could be a therapeutic target to treat Chuvash polycythemia. Here, we fed VhlR200W mice supplemented with Tempol, a small, stable nitroxide molecule and observed that Tempol decreased erythropoietin production, corrected splenomegaly, normalized hematocrit levels, and increased the lifespans of these mice. We attribute the reversal of erythrocytosis/polycythemia to translational repression of Hif2α expression by Tempol-mediated increases in the IRE-binding activity of Irp1, as reversal of polycythemia was abrogated in VhlR200W mice in which Irp1 was genetically ablated. Thus, a new approach to the treatment of patients with Chuvash polycythemia may include dietary supplementation of Tempol, which decreased Hif2α expression and markedly reduced life-threatening erythrocytosis/polycythemia in the VhlR200W mice.
Collapse
Affiliation(s)
- Manik C Ghosh
- Metals Biology and Molecular Medicine Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), and
| | - De-Liang Zhang
- Metals Biology and Molecular Medicine Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), and
| | - Hayden Ollivierre
- Metals Biology and Molecular Medicine Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), and
| | | | - Tracey A Rouault
- Metals Biology and Molecular Medicine Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), and
| |
Collapse
|
17
|
Buroker NE, Ning XH, Zhou ZN, Li K, Cen WJ, Wu XF, Zhu WZ, Scott CR, Chen SH. SNPs, linkage disequilibrium, and chronic mountain sickness in Tibetan Chinese. HYPOXIA 2017; 5:67-74. [PMID: 28770234 PMCID: PMC5529112 DOI: 10.2147/hp.s117967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic mountain sickness (CMS) is estimated at 1.2% in Tibetans living at the Qinghai-Tibetan Plateau. Eighteen single-nucleotide polymorphisms (SNPs) from nine nuclear genes that have an association with CMS in Tibetans have been analyzed by using pairwise linkage disequilibrium (LD). The SNPs included are the angiotensin-converting enzyme (rs4340), the angiotensinogen (rs699), and the angiotensin II type 1 receptor (AGTR1) (rs5186) from the renin-angiotensin system. A low-density lipoprotein apolipoprotein B (rs693) SNP was also included. From the hypoxia-inducible factor oxygen signaling pathway, the endothetal Per-Arnt-Sim domain protein 1 (EPAS1) and the egl nine homolog 1 (ENGL1) (rs480902) SNPs were included in the study. SNPs from the vascular endothelial growth factor (VEGF) signaling pathway included are the v-akt murine thymoma viral oncogene homolog 3 (rs4590656 and rs2291409), the endothelial cell nitric oxide synthase 3 (rs1007311 and rs1799983), and the (VEGFA) (rs699947, rs34357231, rs79469752, rs13207351, rs28357093, rs1570360, rs2010963, and rs3025039). An increase in LD occurred in 40 pairwise comparisons, whereas a decrease in LD was found in 55 pairwise comparisons between the controls and CMS patients. These changes were found to occur within and between signaling pathways, which suggests that there is an interaction between SNP alleles from different areas of the genome that affect CMS.
Collapse
Affiliation(s)
| | - Xue-Han Ning
- Department of Pediatrics, University of Washington.,Division of Cardiology, Seattle Children's Hospital Research Foundation, Seattle, WA, USA
| | - Zhao-Nian Zhou
- Laboratory of Hypoxia Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kui Li
- Lhasa People Hospital, Lhasa, Tibet
| | | | - Xiu-Feng Wu
- Laboratory of Hypoxia Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Zhong Zhu
- Center for Cardiovascular Biology and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Shi-Han Chen
- Department of Pediatrics, University of Washington
| |
Collapse
|