1
|
The Microenvironment That Regulates Vascular Wall Stem/Progenitor Cells in Vascular Injury and Repair. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9377965. [PMID: 35958825 PMCID: PMC9357805 DOI: 10.1155/2022/9377965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Vascular repair upon injury is a frequently encountered pathology in cardiovascular diseases, which is crucial for the maintenance of arterial homeostasis and function. Stem/progenitor cells located on vascular walls have multidirectional differentiation potential and regenerative ability. It has been demonstrated that stem/progenitor cells play an essential role in the basic medical research and disease treatment. The dynamic microenvironment around the vascular wall stem/progenitor cells (VW-S/PCs) possesses many stem cell niche-like characteristics to support and regulate cells' activities, maintaining the properties of stem cells. Under physiological conditions, vascular homeostasis is a cautiously balanced and efficient interaction between stem cells and the microenvironment. These interactions contribute to the vascular repair and remodeling upon vessel injury. However, the signaling mechanisms involved in the regulation of microenvironment on stem cells remain to be further elucidated. Understanding the functional characteristics and potential mechanisms of VW-S/PCs is of great significance for both basic and translational research. This review underscores the microenvironment-derived signals that regulate VW-S/PCs and aims at providing new targets for the treatment of related cardiovascular diseases.
Collapse
|
2
|
Lv K, Kong L, Yang M, Zhang L, Chu S, Zhang L, Yu J, Zhong G, Shi Y, Wang X, Yang N. An ApoA-I Mimic Peptide of 4F Promotes SDF-1α Expression in Endothelial Cells Through PI3K/Akt/ERK/HIF-1α Signaling Pathway. Front Pharmacol 2022; 12:760908. [PMID: 35111045 PMCID: PMC8801807 DOI: 10.3389/fphar.2021.760908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis (AS) seriously impairs the health of human beings and is manifested initially as endothelial cells (ECs) impairment and dysfunction in vascular intima, which can be alleviated through mobilization of endothelial progenitor cells (EPCs) induced by stromal-cell-derived factor-1α (SDF-1α). A strong inverse correlation between HDL and AS has been proposed. The aim of the present work is to investigate whether 4F, an apolipoprotein A-I (apoA-I, major component protein of HDL) mimic peptide, can upregulate SDF-1α in mice and human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. The protein levels of SDF-1α were measured by ELISA assay. Protein levels of HIF-1α, phosphorylated Akt (p-Akt), and phosphorylated ERK (p-ERK) were evaluated by Western blotting analysis. The results show that L-4F significantly upregulates protein levels of HIF-1α, Akt, and ERK, which can be inhibited by the PI3K inhibitor, LY294002, or ERK inhibitor, PD98059, respectively. Particularly, LY294002 can downregulate the levels of p-ERK, while PD98059 cannot suppress that of p-Akt. D-4F can upregulate the levels of HIF, p-Akt, and p-ERK in the abdominal aorta and inferior vena cava from mice. These results suggest that 4F promotes SDF-1α expression in ECs through PI3K/Akt/ERK/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Kaixuan Lv
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lingyu Kong
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Mei Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Linlin Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Shangmin Chu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lichun Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jielun Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.,Medical Laboratory Animal Center, Weifang Medical University, Weifang, China.,Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| | - Guoshen Zhong
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Yanhua Shi
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Xia Wang
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China.,School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.,Medical Laboratory Animal Center, Weifang Medical University, Weifang, China.,Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| |
Collapse
|
3
|
HDL and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:171-187. [DOI: 10.1007/978-981-19-1592-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Yang N, Sun S, Duan G, Lv K, Liang C, Zhang L, Yu J, Tang Y, Lu G. Advances of Endothelial Progenitor Cells in the Development of Depression. Front Cell Neurosci 2021; 15:608656. [PMID: 34421539 PMCID: PMC8375291 DOI: 10.3389/fncel.2021.608656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Depression is a major psychological disease of human beings. With the severity of depression, it elevates the risk of cardiovascular disease (CVD), especially acute coronary syndrome (ACS), resulting in serious harm to human health. The number of endothelial progenitor cells (EPCs) is closely related to the development of depression. It has been reported that the number of peripheral blood EPCs in patients with depression was reduced. However, effects on the function of EPCs in depression are still unclear. This paper aims to analyze and summarize the research of EPCs in depression, and we envision that EPCs might act as a new target for evaluating the severity of depression and its complications.
Collapse
Affiliation(s)
- Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.,Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
| | - Shiyu Sun
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Guangqing Duan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kaixuan Lv
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Chen Liang
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Linlin Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jielun Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.,Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guohua Lu
- School of Psychology, Weifang Medical University, Weifang, China
| |
Collapse
|
5
|
Drinking Molecular Hydrogen Water Is Beneficial to Cardiovascular Function in Diet-Induced Obesity Mice. BIOLOGY 2021; 10:biology10050364. [PMID: 33922704 PMCID: PMC8146054 DOI: 10.3390/biology10050364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Molecular hydrogen (MH) reportedly exerts therapeutic effects against inflammatory diseases as a suppressor of free radical chain reactions. Here, the cardiovascular protective effects of the intake of molecular hydrogen water (MHW) were investigated using high-fat diet-induced obesity (DIO) mice. MHW was prepared using supplier sticks and degassed water as control. MHW intake for 2 weeks did not improve blood sugar or body weight but decreased heart weight in DIO mice. Moreover, MHW intake improved cardiac hypertrophy, shortened the width of cardiomyocytes, dilated the capillaries and arterioles, activated myocardial eNOS-Ser-1177 phosphorylation, and restored left ventricular function in DIO mice. MHW intake promoted the histological conversion of hypertrophy to hyperplasia in white and brown adipose tissues (WAT and BAT) with the upregulation of thermogenic and cardiovascular protective genes in BAT (i.e., Ucp-1, Vegf-a, and eNos). Furthermore, the results of a colony formation assay of bone-marrow-derived endothelial progenitor cells (EPCs) indicated that MHW activated the expansion, differentiation, and mobilization of EPCs to maintain vascular homeostasis. These findings indicate that the intake of MHW exerts cardiovascular protective effects in DIO mice. Hence, drinking MHW is a potential prophylactic strategy against cardiovascular disorders in metabolic syndrome.
Collapse
|
6
|
Zhao Y, Qian Y, Sun Z, Shen X, Cai Y, Li L, Wang Z. Role of PI3K in the Progression and Regression of Atherosclerosis. Front Pharmacol 2021; 12:632378. [PMID: 33767629 PMCID: PMC7985550 DOI: 10.3389/fphar.2021.632378] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol 3 kinase (PI3K) is a key molecule in the initiation of signal transduction pathways after the binding of extracellular signals to cell surface receptors. An intracellular kinase, PI3K activates multiple intracellular signaling pathways that affect cell growth, proliferation, migration, secretion, differentiation, transcription and translation. Dysregulation of PI3K activity, and as aberrant PI3K signaling, lead to a broad range of human diseases, such as cancer, immune disorders, diabetes, and cardiovascular diseases. A growing number of studies have shown that PI3K and its signaling pathways play key roles in the pathophysiological process of atherosclerosis. Furthermore, drugs targeting PI3K and its related signaling pathways are promising treatments for atherosclerosis. Therefore, we have reviewed how PI3K, an important regulatory factor, mediates the development of atherosclerosis and how targeting PI3K can be used to prevent and treat atherosclerosis.
Collapse
Affiliation(s)
- Yunyun Zhao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyi Shen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yaoyao Cai
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Helkin A, Stein JJ, Lin S, Siddiqui S, Maier KG, Gahtan V. Dyslipidemia Part 1--Review of Lipid Metabolism and Vascular Cell Physiology. Vasc Endovascular Surg 2016; 50:107-18. [PMID: 26983667 DOI: 10.1177/1538574416628654] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dyslipidemia, more specifically, high-serum low-density lipoproteins and low-serum high-density lipoproteins, are known risk factors for cardiovascular disease. The current clinical treatment of dyslipidemia represents the outcome of a large body of fundamental basic science research on lipids, lipid metabolism, and the effects of different lipids on cellular components of the artery, inflammatory cells, and platelets. In general, lower density lipids activate intracellular pathways to increase local and systemic inflammation, monocyte adhesion, endothelial cell dysfunction and apoptosis, and smooth muscle cell proliferation, resulting in foam cell formation and genesis of atherosclerotic plaque. In contrast, higher density lipids prevent or attenuate atherosclerosis. This article is part 1 of a 2-part review, with part 1 focusing on lipid metabolism and the downstream effects of lipids on the development of atherosclerosis, and part 2 on the clinical treatment of dyslipidemia and the role of these drugs for patients with arterial disease exclusive of the coronary arteries.
Collapse
Affiliation(s)
- Alex Helkin
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeffery J Stein
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stacey Lin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sufyan Siddiqui
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Kristopher G Maier
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Vivian Gahtan
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|