1
|
Yu W, Chakravarthi VP, Borosha S, Dilower I, Lee EB, Ratri A, Starks RR, Fields PE, Wolfe MW, Faruque MO, Tuteja G, Rumi MAK. Transcriptional regulation of Satb1 in mouse trophoblast stem cells. Front Cell Dev Biol 2022; 10:918235. [PMID: 36589740 PMCID: PMC9795202 DOI: 10.3389/fcell.2022.918235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
SATB homeobox proteins are important regulators of developmental gene expression. Among the stem cell lineages that emerge during early embryonic development, trophoblast stem (TS) cells exhibit robust SATB expression. Both SATB1 and SATB2 act to maintain the trophoblast stem-state. However, the molecular mechanisms that regulate TS-specific Satb expression are not yet known. We identified Satb1 variant 2 as the predominant transcript in trophoblasts. Histone marks, and RNA polymerase II occupancy in TS cells indicated an active state of the promoter. A novel cis-regulatory region with active histone marks was identified ∼21 kbp upstream of the variant 2 promoter. CRISPR/Cas9 mediated disruption of this sequence decreased Satb1 expression in TS cells and chromosome conformation capture analysis confirmed looping of this distant regulatory region into the proximal promoter. Scanning position weight matrices across the enhancer predicted two ELF5 binding sites in close proximity to SATB1 sites, which were confirmed by chromatin immunoprecipitation. Knockdown of ELF5 downregulated Satb1 expression in TS cells and overexpression of ELF5 increased the enhancer-reporter activity. Interestingly, ELF5 interacts with SATB1 in TS cells, and the enhancer activity was upregulated following SATB overexpression. Our findings indicate that trophoblast-specific Satb1 expression is regulated by long-range chromatin looping of an enhancer that interacts with ELF5 and SATB proteins.
Collapse
Affiliation(s)
- Wei Yu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rebekah R. Starks
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael W. Wolfe
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - M. Omar Faruque
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
2
|
Lin GW, Liang YC, Wu P, Chen CK, Lai YC, Jiang TX, Haung YH, Chuong CM. Regional specific differentiation of integumentary organs: SATB2 is involved in α- and β-keratin gene cluster switching in the chicken. Dev Dyn 2022; 251:1490-1508. [PMID: 34240503 PMCID: PMC8742846 DOI: 10.1002/dvdy.396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Animals develop skin regional specificities to best adapt to their environments. Birds are excellent models in which to study the epigenetic mechanisms that facilitate these adaptions. Patients suffering from SATB2 mutations exhibit multiple defects including ectodermal dysplasia-like changes. The preferential expression of SATB2, a chromatin regulator, in feather-forming compared to scale-forming regions, suggests it functions in regional specification of chicken skin appendages by acting on either differentiation or morphogenesis. RESULTS Retrovirus mediated SATB2 misexpression in developing feathers, beaks, and claws causes epidermal differentiation abnormalities (e.g. knobs, plaques) with few organ morphology alterations. Chicken β-keratins are encoded in 5 sub-clusters (Claw, Feather, Feather-like, Scale, and Keratinocyte) on Chromosome 25 and a large Feather keratin cluster on Chromosome 27. Type I and II α-keratin clusters are located on Chromosomes 27 and 33, respectively. Transcriptome analyses showed these keratins (1) are often tuned up or down collectively as a sub-cluster, and (2) these changes occur in a temporo-spatial specific manner. CONCLUSIONS These results suggest an organizing role of SATB2 in cluster-level gene co-regulation during skin regional specification.
Collapse
Affiliation(s)
- Gee-Way Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402204, Taiwan
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yen-Hua Haung
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Antonio Urrutia G, Ramachandran H, Cauchy P, Boo K, Ramamoorthy S, Boller S, Dogan E, Clapes T, Trompouki E, Torres-Padilla ME, Palvimo JJ, Pichler A, Grosschedl R. ZFP451-mediated SUMOylation of SATB2 drives embryonic stem cell differentiation. Genes Dev 2021; 35:1142-1160. [PMID: 34244292 PMCID: PMC8336893 DOI: 10.1101/gad.345843.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Here, Urrutia et al. set out to study the mechanism that regulates the choice between pluripotency and differentiation in embryonic stem cells (ESCs). Using biochemical and genomic analyses, the authors identify SUMO2 modification of Satb2 by the E3 ligase Zfp451 as a driver of ESC differentiation. The establishment of cell fates involves alterations of transcription factor repertoires and repurposing of transcription factors by post-translational modifications. In embryonic stem cells (ESCs), the chromatin organizers SATB2 and SATB1 balance pluripotency and differentiation by activating and repressing pluripotency genes, respectively. Here, we show that conditional Satb2 gene inactivation weakens ESC pluripotency, and we identify SUMO2 modification of SATB2 by the E3 ligase ZFP451 as a potential driver of ESC differentiation. Mutations of two SUMO-acceptor lysines of Satb2 (Satb2K →R) or knockout of Zfp451 impair the ability of ESCs to silence pluripotency genes and activate differentiation-associated genes in response to retinoic acid (RA) treatment. Notably, the forced expression of a SUMO2-SATB2 fusion protein in either Satb2K →R or Zfp451−/− ESCs rescues, in part, their impaired differentiation potential and enhances the down-regulation of Nanog. The differentiation defect of Satb2K →R ESCs correlates with altered higher-order chromatin interactions relative to Satb2wt ESCs. Upon RA treatment of Satb2wt ESCs, SATB2 interacts with ZFP451 and the LSD1/CoREST complex and gains binding at differentiation genes, which is not observed in RA-treated Satb2K →R cells. Thus, SATB2 SUMOylation may contribute to the rewiring of transcriptional networks and the chromatin interactome of ESCs in the transition of pluripotency to differentiation.
Collapse
Affiliation(s)
- Gustavo Antonio Urrutia
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Haribaskar Ramachandran
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Kyungjin Boo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Soeren Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Esen Dogan
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Clapes
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
4
|
Zhang Y, Zheng L, Le M, Nakano Y, Chan B, Huang Y, Torbaty PM, Kohwi Y, Marcucio R, Habelitz S, Den Besten PK, Kohwi-Shigematsu T. SATB1 establishes ameloblast cell polarity and regulates directional amelogenin secretion for enamel formation. BMC Biol 2019; 17:104. [PMID: 31830989 PMCID: PMC6909472 DOI: 10.1186/s12915-019-0722-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polarity is necessary for epithelial cells to perform distinct functions at their apical and basal surfaces. Oral epithelial cell-derived ameloblasts at secretory stage (SABs) synthesize large amounts of enamel matrix proteins (EMPs), largely amelogenins. EMPs are unidirectionally secreted into the enamel space through their apical cytoplasmic protrusions, or Tomes' processes (TPs), to guide the enamel formation. Little is known about the transcriptional regulation underlying the establishment of cell polarity and unidirectional secretion of SABs. RESULTS The higher-order chromatin architecture of eukaryotic genome plays important roles in cell- and stage-specific transcriptional programming. A genome organizer, special AT-rich sequence-binding protein 1 (SATB1), was discovered to be significantly upregulated in ameloblasts compared to oral epithelial cells using a whole-transcript microarray analysis. The Satb1-/- mice possessed deformed ameloblasts and a thin layer of hypomineralized and non-prismatic enamel. Remarkably, Satb1-/- ameloblasts at the secretory stage lost many morphological characteristics found at the apical surface of wild-type (wt) SABs, including the loss of Tomes' processes, defective inter-ameloblastic adhesion, and filamentous actin architecture. As expected, the secretory function of Satb1-/- SABs was compromised as amelogenins were largely retained in cells. We found the expression of epidermal growth factor receptor pathway substrate 8 (Eps8), a known regulator for actin filament assembly and small intestinal epithelial cytoplasmic protrusion formation, to be SATB1 dependent. In contrast to wt SABs, EPS8 could not be detected at the apical surface of Satb1-/- SABs. Eps8 expression was greatly reduced in small intestinal epithelial cells in Satb1-/- mice as well, displaying defective intestinal microvilli. CONCLUSIONS Our data show that SATB1 is essential for establishing secretory ameloblast cell polarity and for EMP secretion. In line with the deformed apical architecture, amelogenin transport to the apical secretory front and secretion into enamel space were impeded in Satb1-/- SABs resulting in a massive cytoplasmic accumulation of amelogenins and a thin layer of hypomineralized enamel. Our studies strongly suggest that SATB1-dependent Eps8 expression plays a critical role in cytoplasmic protrusion formation in both SABs and in small intestines. This study demonstrates the role of SATB1 in the regulation of amelogenesis and the potential application of SATB1 in ameloblast/enamel regeneration.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, USA.
| | - Liwei Zheng
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Michael Le
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Barry Chan
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Yulei Huang
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | | | - Yoshinori Kohwi
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Stefan Habelitz
- Preventive and Restorative Dental Sciences, University of California, San Francisco, USA
| | - Pamela K Den Besten
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | | |
Collapse
|
5
|
Luo X, Xu L, Wu X, Tan H, Liu L. Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. Cancer Cell Int 2019; 19:134. [PMID: 31130823 PMCID: PMC6525380 DOI: 10.1186/s12935-019-0850-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background Special AT-rich sequence-binding protein 1 (SATB1) is a chromatin-remodeling protein that regulates gene expressions in different types of cancer. Up-regulation of SATB1 is linked with progression of tumors. Our previous study showed that SATB1 expression was decreased in T cell leukemia/lymphoma. The contrary roles of SATB1 in solid organ tumors and hematology malignancy may provide hints to study the function of SATB1. Methods To characterize SATB1 mRNA and protein expression in acute myeloid leukemia (AML), we performed qRT-PCR and Western blot on bone marrow mononuclear cells from 52 newly diagnosed AML patients. Stable HL-60 cell lines with knockdown of SATB1 by shRNAs sequences (HL-60 SATB1-shRNA1 and HL-60 SATB1-shRNA2) were established. Cell proliferation, cell cycle and cell invasiveness were analyzed. Murine model was established using HL-60 SATB1-shRNAs treated nude mice and tumorigenicity was compared to study the role of SATB1 in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown to investigate the mechanisms underlying the regulation of AML cell growth by SATB1. Results We found that SATB1 expression was significantly decreased in patients with AML compared to normal control, and was increased after complete remission of AML. Knockdown of SATB1 enhanced the proliferation of HL-60 cells and accelerated S phase entry in vitro, and promoted the tumor growth in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown and the differentially expressed genes were involved in NF-κB, MAPK and PI3 K/Akt signaling pathways. Nuclear NF-κB p65 levels were significantly increased in SATB1 depleted HL-60 cells. Conclusions Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. SATB1 could be a predictor for better response to treatment in AML.
Collapse
Affiliation(s)
- Xiaodan Luo
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lihua Xu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Xiaohong Wu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Huo Tan
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lian Liu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| |
Collapse
|
6
|
Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2019; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Rutika Naik
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
7
|
Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomed Pharmacother 2018; 104:87-93. [DOI: 10.1016/j.biopha.2018.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
|
8
|
The Special AT-rich Sequence Binding Protein 1 (SATB1) and its role in solid tumors. Cancer Lett 2018; 417:96-111. [DOI: 10.1016/j.canlet.2017.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
9
|
Winick-Ng W, Rylett RJ. Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer's Disease. Front Mol Neurosci 2018. [PMID: 29541020 PMCID: PMC5835833 DOI: 10.3389/fnmol.2018.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Li YC, Bu LL, Mao L, Ma SR, Liu JF, Yu GT, Deng WW, Zhang WF, Sun ZJ. SATB1 promotes tumor metastasis and invasiveness in oral squamous cell carcinoma. Oral Dis 2016; 23:247-254. [PMID: 27783844 DOI: 10.1111/odi.12602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/09/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Our aim is to evaluate the expression of SATB1 in human oral squamous cell carcinomas (OSCC) and its role in the invasiveness and metastasis of OSCC. SUBJECTS AND METHODS A human OSCC tissue microarray was used to evaluate the expression pattern of SATB1. SATB1 mRNA knockdown was performed in human OSCC cell lines SCC25 and Cal27 to assess the function of SATB1 in the invasiveness and metastasis of OSCC. RESULTS SATB1 is highly expressed in human OSCC determined by immunohistochemistry, and its nuclear/cytoplasmic ratio of histoscore is significantly correlated with patients' prognosis. Reduced cell motility, invasiveness, expression of epithelial to mesenchymal transition (EMT) markers (N-cadherin and β-catenin), and elevated expression of epithelial markers were observed in SATB1-knockdown cells in in vitro studies. Depletion of SATB1 also restored a cobblestone-like morphology in TGF-β1-treated cells. CONCLUSIONS These findings suggest SATB1 may play an important role in OSCC invasiveness and metastasis.
Collapse
Affiliation(s)
- Y-C Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L-L Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - S-R Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J-F Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G-T Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - W-W Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - W-F Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z-J Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|