1
|
Chen W, Sui J, Wang C. Magnetically Actuated Capsule Robots: A Review. IEEE ACCESS 2022; 10:88398-88420. [DOI: 10.1109/access.2022.3197632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Weiyuan Chen
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jianbo Sui
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Chengyong Wang
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Ota K, Kojima Y, Kakimoto K, Nouda S, Takeuchi T, Shindo Y, Ohtsuka Y, Ohtsuka N, Higuchi K. Safety, efficacy, and maneuverability of a self-propelled capsule endoscope for observation of the human gastrointestinal tract. Endosc Int Open 2021; 9:E1391-E1396. [PMID: 34466364 PMCID: PMC8382508 DOI: 10.1055/a-1507-4540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/03/2021] [Indexed: 01/25/2023] Open
Abstract
Background and study aims We developed a self-propelled capsule endoscope that can be controlled from outside the body with real-time observation. To improve the device, we conducted a clinical trial of total gastrointestinal capsule endoscopy in healthy subjects to ascertain whether our first-generation, self-propelled capsule endoscope was safe and effective for observing the entire human gastrointestinal tract. Patients and methods After adequate gastrointestinal pretreatment, five healthy subjects were instructed to swallow a self-propelling capsule endoscope and the safety of a complete gastrointestinal capsule endoscopy with this device was assessed. We also investigated basic problems associated with complete gastrointestinal capsule endoscopy. Results No adverse effects of the magnetic field were identified in any of the subjects. No mucosal damage was noted in any of the subjects with the use of our first-generation, self-propelling capsule endoscope. We found that it took longer than expected to observe the stomach; the view was compromised by the swallowed saliva. The pylorus was extremely difficult to navigate, and the endoscope's fin sometimes got caught in the folds of the small intestine and colon. Conclusions To resolve the problems associated with the existing self-propelling capsule endoscope, it may be necessary to not only improve the capsule endoscopes, but also to control the environment within the gastrointestinal tract with medications and other means. Our results could guide other researchers in developing capsule endoscopes controllable from outside the body, thus allowing real-time observation.
Collapse
Affiliation(s)
- Kazuhiro Ota
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Yuichi Kojima
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kazuki Kakimoto
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Sadaharu Nouda
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Toshihisa Takeuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | | | | | | | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
3
|
Alsunaydih FN, Yuce MR. Next-generation ingestible devices: sensing, locomotion and navigation. Physiol Meas 2021; 42. [PMID: 33706294 DOI: 10.1088/1361-6579/abedc0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
There is significant interest in exploring the human body's internal activities and measuring important parameters to understand, treat and diagnose the digestive system environment and related diseases. Wireless capsule endoscopy (WCE) is widely used for gastrointestinal (GI) tract exploration due to its effectiveness as it provides no pain and is totally tolerated by the patient. Current ingestible sensing technology provides a valuable diagnostic tool to establish a platform for monitoring the physiological and biological activities inside the human body. It is also used for visualizing the GI tract to observe abnormalities by recording the internal cavity while moving. However, the capsule endoscopy is still passive, and there is no successful locomotion method to control its mobility through the whole GI tract. Drug delivery, localization of abnormalities, cost reduction and time consumption are improvements that can be gained from having active ingestible WCEs. In this article, the current technological developments of ingestible devices including sensing, locomotion and navigation are discussed and compared. The main features required to implement next-generation active WCEs are explored. The methods are evaluated in terms of the most important features such as safety, velocity, complexity of design, control, and power consumption.
Collapse
Affiliation(s)
- Fahad N Alsunaydih
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia.,Department of Electrical Engineering, Qassim University, Onizah, Qassim, Saudi Arabia
| | - Mehmet R Yuce
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Nouda S, Ota K, Higuchi K. Retrograde colon capsule endoscopy with the self-propelling capsule endoscope: The first human trial (with videos). Dig Endosc 2018; 30:117-118. [PMID: 28940818 DOI: 10.1111/den.12969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sadaharu Nouda
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Kazuhiro Ota
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
5
|
Shamsudhin N, Zverev VI, Keller H, Pane S, Egolf PW, Nelson BJ, Tishin AM. Magnetically guided capsule endoscopy. Med Phys 2017; 44:e91-e111. [PMID: 28437000 DOI: 10.1002/mp.12299] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/22/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022] Open
Abstract
Wireless capsule endoscopy (WCE) is a powerful tool for medical screening and diagnosis, where a small capsule is swallowed and moved by means of natural peristalsis and gravity through the human gastrointestinal (GI) tract. The camera-integrated capsule allows for visualization of the small intestine, a region which was previously inaccessible to classical flexible endoscopy. As a diagnostic tool, it allows to localize the sources of bleedings in the middle part of the gastrointestinal tract and to identify diseases, such as inflammatory bowel disease (Crohn's disease), polyposis syndrome, and tumors. The screening and diagnostic efficacy of the WCE, especially in the stomach region, is hampered by a variety of technical challenges like the lack of active capsular position and orientation control. Therapeutic functionality is absent in most commercial capsules, due to constraints in capsular volume and energy storage. The possibility of using body-exogenous magnetic fields to guide, orient, power, and operate the capsule and its mechanisms has led to increasing research in Magnetically Guided Capsule Endoscopy (MGCE). This work shortly reviews the history and state-of-art in WCE technology. It highlights the magnetic technologies for advancing diagnostic and therapeutic functionalities of WCE. Not restricting itself to the GI tract, the review further investigates the technological developments in magnetically guided microrobots that can navigate through the various air- and fluid-filled lumina and cavities in the body for minimally invasive medicine.
Collapse
Affiliation(s)
- Naveen Shamsudhin
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH 8092, Switzerland
| | - Vladimir I Zverev
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Henrik Keller
- KUKA Roboter GmbH, Zugspitzstrasse 140, Augsburg, 86165, Germany
| | - Salvador Pane
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH 8092, Switzerland
| | - Peter W Egolf
- Institute of Thermal Sciences and Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains, CH 1401, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH 8092, Switzerland
| | - Alexander M Tishin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia.,Pharmag LLC, Promyshlennaya st 4, Troitsk, Moscow, 142190, Russia
| |
Collapse
|